Skip to main content
Log in

Influence of Microalloying Additions (Nb, Ti, Ti/B, V and Mo) on the Microstructure of TWIP Steels

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

High-Mn austenitic twinning-induced plasticity (TWIP) steels have become nowadays one of the most innovative and attractive materials due to their excellent combination of high strength and high ductility. Along with this, the addition of microalloying elements in the composition of TWIP steels generates a remarkably increase in mechanical properties. The main objective of this research work is to determine the influence of Nb, V, Mo, Ti and Ti/B, as microalloying elements on the microstructure of high-Mn austenitic TWIP steels after as-solutioned and thermomechanical treated conditions. Once melted, TWIP steels were subjected to a homogenization treatment and then hot-rolled with a reduction of 60%. Both processes were carried out at 1200 °C. Afterward, the laminated pieces experimented a solution treatment at 1100 °C and then were water-quenched. Equilibrium phase diagrams of the studied TWIP steels were calculated by using JMatPro. Metallographic characterization was carried out by light optical microscopy and scanning electron microscopy-energy dispersive spectroscopy. X-ray diffraction analyses and Vickers microhardness tests were also performed. In general, results showed that inclusions of MnS and AlN act as nuclei for the microalloying elements precipitation. On the other hand, microalloying additions to TWIP steels resulted in a grain size refinement effect, being the V-bearing TWIP steel the one that presented the highest grain size reduction. X-ray diffraction results showed that austenite phase was stable, as no observation of martensite transformation was noticed. The Ti- and V-bearings TWIP steels exhibited the highest microhardness values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Hadfield, Hadfield’s manganese steel. Science. 12, 284 (1888)

    Google Scholar 

  2. S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Mechanical behaviour of an austenitic Fe-30Mn-3Al-3Si and the importance of deformation twinning. Acta Mater. 52, 2005 (2004)

    Article  CAS  Google Scholar 

  3. O. Bouaziz, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr. Opin. Solid State Mater. 15, 141 (2011)

    Article  CAS  Google Scholar 

  4. V. Tsakiris, D.V. Edmonds, Martensite and deformation twinning in austenitic steels. Mater. Sci. Eng. A. 430, 273–275 (1999)

    Google Scholar 

  5. O. Gräassel, G. Frommeyer, C. Derder, H. Hofmann, Phase transformation and mechanical properties of Fe–Mn–Si–Al TRIP steels. J. Phys. IV. 7, 383 (1997)

    Google Scholar 

  6. A. Saeed-Akbari, A. Schwedt, W. Bleck, Low stacking fault energy steels in the context of manganese rich iron based alloys. Scr. Mater. 66, 1024 (2012)

    Article  CAS  Google Scholar 

  7. Z.Y. Liang, M.X. Huang, H.W. Yen, C.P. Scott, On the workhardening mechanism of TWIP steels strengthened by nanometresized vanadium carbides. in Proceeding of the 2nd International Symposium on Automobile Steel (China Machine Press, Anshan, China, 2013) pp. 113–117

  8. C.P. Scott, D. Milbourn, M. Huang, F. Perrard, Opportunities for vanadium microalloying in AHSS for the automotive sector. in Proceeding of the 2nd International Symposium on Automobile Steel (China Machine Press, Anshan, China, 2013), pp. 94–99

  9. S. Kang, J.G. Jung, Y.K. Lee, Effects of niobium on mechanical twinning and tensile properties of a high Mn twinning-induced plasticity steel. Mater. Trans. 53, 2187 (2012)

    Article  CAS  Google Scholar 

  10. K. Renard, P.J. Jacques, On the relationship between work hardening and twinning rate in TWIP steels. Mater. Sci. Eng. A. 542, 8 (2012)

    Article  CAS  Google Scholar 

  11. F. Reyes-Calderon, J. Calvo, J.M. Cabrera, I. Mejía, Effect of V on hot deformation characteristics of TWIP steels. Steel Res. Int. 83, 334 (2012)

    Article  CAS  Google Scholar 

  12. L. Chen, Y. Zhao, X. Qin, Some aspects of high manganese twinning-induced plasticity (TWIP) steel. Acta Metall. Sin.Eng.Lett. 26, 1 (2013)

    Article  CAS  Google Scholar 

  13. A. Saeed-Akbari, A. Schwedt, W. Bleck, Low stacking fault energy steels in the context of manganese-rich iron-based alloys. Scr. Mater. 66, 1024 (2012)

    Article  CAS  Google Scholar 

  14. J.K. Choi, S.G. Lee, Y.H. Park, I.W. Han, J.W. Morris, High manganese austenitic steel for cryogenic applications. in The Twenty-Second International Offshore And Polar Engineering Conference, (Rhodes, 2012) p. 29

  15. H. Kim, Y. Ha, K.H. Kwon, M. Kang, N.J. Kim, S. Lee, Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C–(22–26)Mn steels. Acta Mater. 87, 332 (2015)

    Article  CAS  Google Scholar 

  16. S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, S. Lee, Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels. Acta Mater. 100, 39 (2015)

    Article  CAS  Google Scholar 

  17. H. Kim, J. Park, J.E. Jung, S.S. Sohn, S. Lee, Interpretation of cryogenic-temperature Charpy fracture initiation and propagation energies by microstructural evolution occurring during dynamic compressive test of austenitic Fe–(0.4,1.0)C–18Mn steels. Mater. Sci. Eng. A. 641, 340 (2015)

    Article  CAS  Google Scholar 

  18. H. Kim, J. Park, Y. Ha, W. Kim, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Dynamic tension–compression asymmetry of martensitic transformation in austenitic Fe–(0.4,1.0)C–18Mn steels for cryogenic applications. Acta Mater. 96, 37 (2015)

    Article  CAS  Google Scholar 

  19. J. Lee, S.S. Sohn, S. Hong, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, S. Lee, Effects of Mn addition on tensile and Charpy impact properties in austenitic Fe-Mn-C-Al-based steels for cryogenic applications. Metall. Mater. Trans. A. 45, 5419 (2014)

    Article  CAS  Google Scholar 

  20. ASTM E112, Standard Test Methods for Determining Average Grain Size (ASTM, West Conshohocken, 1996)

    Google Scholar 

  21. ASTM E92–17, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic (ASTM, West Conshohocken, 2016)

    Google Scholar 

  22. S. Lee, S. Shin, M. Kwon, K. Lee, B.C. De Cooman, Tensile properties of medium Mn steel with a bimodal UFG α + γ and coarse δ-ferrite microstructure. Metall. Mater. Trans. A. 48, 1678 (2017)

    Article  CAS  Google Scholar 

  23. G. Frommeyer, U. Brüx, Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light weight Triplex steels. Steel Res. Int. 77, 627 (2006)

    Article  CAS  Google Scholar 

  24. F. Reyes-Calderón, I. Mejía, A. Boulaajaj, J.M. Cabrera, Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high-Mn austenitic twinning induced plasticity (TWIP) steel. Mater. Sci. Eng. A. 560, 552 (2013)

    Article  CAS  Google Scholar 

  25. S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath, Formation of annealing twins in F.C.C crystals. Acta Mater. 45, 2633 (1997)

    Article  CAS  Google Scholar 

  26. A. Marc, E. Murr, A model for the formation of annealing twins in F.C.C Metals and Alloys. Acta Metall. 26, 951 (1978)

    Article  Google Scholar 

  27. K. Choi, C.H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, N.J. Kim, Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel. Scr. Mater. 63, 1028 (2010)

    Article  CAS  Google Scholar 

  28. N. Tewary, S.K. Ghosh, R. Saha, S. Chatterjee, Deformation and annealing behaviour of a low carbon high Mn TWIP steel microalloyed with Ti. Philos. Mag. Lett. 99, 1 (2019)

    Google Scholar 

  29. D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, G. Wu, F. Ren, Influences of Nb-microalloying on microstructure and mechanical properties of Fe–25Mn–3Si–3Al TWIP steel. Mater. Des. 84, 238 (2015)

    Article  CAS  Google Scholar 

  30. H. Luo, P. Zhao, Effect of molybdenum and temperature reduction on hot ductility of 0.2C–Mn steels. Ironmak. Steelmak. 28, 439 (2001)

    Article  CAS  Google Scholar 

  31. H. Mohrbacher, Principal effects of Mo in HSLA steels and cross effects with microalloying elements. in International Seminar in Applications of Mo in Steels (Central Iron and Steel Research Institute, Beijing, China, 2010) pp. 75-96

  32. X. Sun, Q. Yong, The roles and applications of molybdenum element in low alloy steels. in International Seminar in Applications of Mo in Steels (Central Iron and Steel Research Institute, Beijing, China, 2010) pp. 61–73

  33. H. Kwan, The microstructures and mechanical properties of an austenitic Nb-bearing Fe–Mn–Al–C alloy processed by controlled rolling. Mater. Sci. Eng. A. 279, 1 (2000)

    Article  Google Scholar 

  34. J.P. Chateau, A. Dumay, S. Allain, A. Jacques, Precipitation hardening of a FeMnC TWIP steel by vanadium carbides. J. Phys. Conf. Ser. 240, 1 (2010)

    Google Scholar 

  35. S.E. Kang, A. Tuling, I. Lau, J.R. Banerjee, B. Mintz, The hot ductility of Nb/V containing high Al TWIP steels. Mater. Sci. Technol. 27, 909 (2011)

    Article  CAS  Google Scholar 

  36. D.G. Najafizadeh, A.R. Ueji, S.M. Monirvaghefi, Tensile deformation behavior of high manganese austenitic steel: The role of grain size. Mater. Des. 31, 3395 (2010)

    Article  CAS  Google Scholar 

  37. H. Yin, Inclusion characterization and thermodynamics for high-Al advanced high-strength steels. AIST. 3, 64 (2006)

    CAS  Google Scholar 

  38. C. Zhuang, J. Liu, Z. Mi, H. Jiang, D. Tang, G. Wang, Non-metallic inclusions in TWIP steel. Steel Res. Int. 85, 1432 (2014)

    Article  CAS  Google Scholar 

  39. H. Liu, J. Liu, S.K. Michelic, S. Shen, X. Su, B. Wu, H. Ding, Characterization and analysis of non-Metallic inclusions in low-carbon Fe–Mn–Si–Al TWIP steels. Steel Res. Int. 12, 1723 (2016)

    Article  CAS  Google Scholar 

  40. P. Lan, H. Tang, J. Zhang, Hot ductility of high alloy Fe–Mn–C austenite TWIP steel. Mater. Sci. Eng. A. 660, 127 (2016)

    Article  CAS  Google Scholar 

  41. T. Ogura, C.J. McMahon, H.C. Feng, V. Vitek, Structure-dependent intergranular segregation of phosphorus in austenite in a Ni-Cr steel. Acta Metall. 26, 1317 (1978)

    Article  CAS  Google Scholar 

  42. M. Bhattacharyya, B. Langelier, H.S. Zurob, Effect of solute Nb on grain growth in Fe-30Mn steel. Metall. Mater. Trans. A. 50, 3674 (2019)

    Article  CAS  Google Scholar 

  43. H. Gwon, J.K. Kim, B. Jian, H. Mohrbacher, T. Song, S.K. Kim, B.C. De Cooman, Partially-recrystallized, Nb-alloyed TWIP steels with a superior strength-ductility balance. Mater. Sci. Eng. A. 711, 130 (2018)

    Article  CAS  Google Scholar 

  44. I. Mejía, A.E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo, J.M. Cabrera, Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel. Mater. Sci. Eng. A. 616, 229 (2014)

    Article  CAS  Google Scholar 

  45. C. Scott, B. Remy, J.L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard, C. Curfs, Precipitation strengthening in high manganese austenitic TWIP steels. Int. J. Mater. Res. 102, 538 (2011)

    Article  CAS  Google Scholar 

  46. D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, G. Wu, N. Lv, F. Ren, Influences of Nb-microalloying on microstructure and mechanical properties of Fe–25Mn–3Si–3Al TWIP steel. Mater. Des. 84, 238 (2015)

    Article  CAS  Google Scholar 

  47. F. Lan, W. Du, C. Zhuang, C. Li, Effect of niobium on inclusions in Fe-Mn-C-Al twinning-induced plasticity steel. Metals. 11, 83 (2021)

    Article  CAS  Google Scholar 

  48. H. Gwon, J.K. Kim, S. Shin, L. Cho, B.C. De Cooman, The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel. Mater. Sci. Eng. A. 696, 416 (2017)

    Article  CAS  Google Scholar 

  49. K. Han, Alloy additions on solubility of alloy carbides in steel. Scr. Metall. Mater. 28, 699 (1993)

    Article  CAS  Google Scholar 

  50. J.K. Ren, Q.Y. Chen, J. Chen, Z. Liu, Role of vanadium additions on tensile and cryogenic-temperature charpy impact properties in hot-rolled high-Mn austenitic steels. Mater. Sci. Eng. A. 811, 1 (2021)

    Article  CAS  Google Scholar 

  51. L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels. J. Achiev. Mater. Manuf. Eng. 31, 218 (2008)

    Google Scholar 

  52. A.E. Salas-Reyes, I. Mejía, Á. Ruíz-Baltazar, J.M. Cabrera, Transmission electron microscopy characterization and high-resolution modeling of second-phase particles of V- and Ti-containing twinning-induced plasticity steel under uniaxial hot-tensile condition. Steel Res. Int. 90, 1900098 (2019)

    Article  CAS  Google Scholar 

  53. H. Liu, J. Liu, S.K. Michelic, S. Shen, X. Su, B. Wu, H. Ding, Characterization and analysis of non-metallic inclusions in low carbon Fe-Mn-Si-Al TWIP steels. Steel Res. Int. 87, 1723 (2016)

    Article  CAS  Google Scholar 

  54. Y. Han, J. Shi, L. Xu, W.Q. Cao, H. Dong, Effects of Ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel. Mater. Des. 34, 427 (2012)

    Article  CAS  Google Scholar 

  55. D. Zamani, A. Najafizadeh, H. Monajati, G. Razavi, The effect of thermo-mechanical treatment and adding niobium and titanium on microstructure and mechanical properties of TWIP steel. Int. J. Appl. Phys. 1, 195 (2011)

    CAS  Google Scholar 

  56. R. Kim, C. Bae, Y.M. Ha, J. Kim, Effect of titanium addition on high temperature workability of high manganese austenitic steel. ISIJ Int. 58, 535 (2018)

    Article  CAS  Google Scholar 

  57. I. Mejía, A.E. Salas-Reyes, J. Calvo, J.M. Cabrera, Effect of Ti and B microadditions on the hot ductility behavior of a High-Mn austenitic Fe–23Mn–1.5Al–1.3Si–0.5C TWIP steel. Mater. Sci. Eng. A. 648, 311 (2015)

    Article  CAS  Google Scholar 

  58. E. López-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde, J.M. Cabrera, Hot ductility behavior of boron microalloyed steels. Mater. Sci. Eng. A. 460, 464 (2007)

    Article  CAS  Google Scholar 

  59. I. Mejía, G. Altamirano, A. Bedolla-Jacuinde, J.M. Cabrera, Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron. Mater. Sci. Eng. A. 610, 116 (2014)

    Article  CAS  Google Scholar 

  60. E.D. Hondros, M.P. Seah, Segregation to interfaces. Int. Met. Rev. 22, 262 (1977)

    Article  CAS  Google Scholar 

  61. C. Li, F. Li, J. Liang, R. Cao, Z. Zhao, Effects of boron on mechanical properties of a hot-rolled 13% Mn metastable austenitic steel. Mater. Lett. 233, 314 (2018)

    Article  CAS  Google Scholar 

  62. H. Wan, Y. Cai, D. Song, C. Chen, Effect of Cr/Mo carbides on corrosion behaviour of Fe-Mn-C twinning induced plasticity steel. Corros. Sci. 167, 108518 (2020)

    Article  CAS  Google Scholar 

  63. J. Moon, J. Lee, C. Lee, Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel. Mater. Sci. Eng. A. 459, 40 (2007)

    Article  CAS  Google Scholar 

  64. K. Zhang, Z.D. Li, X.J. Sun, Q.L. Yong, J.W. Yang, Y.M. Li, P.L. Zhao, Development of Ti–V–Mo complex microalloyed hot-rolled 900-MPa-grade high-strength steel. Acta Metall. Sin. Engl. Lett. 28, 641 (2015)

    Article  CAS  Google Scholar 

  65. F.B. Pickering, B. Garbarz, Strengthening in pearlite formed from thermomechanically processed austenite in vanadium steels and implications for toughness. Mater. Sci. Technol. 5, 227 (1989)

    Article  CAS  Google Scholar 

  66. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int. 44, 1945 (2004)

    Article  CAS  Google Scholar 

  67. H.O. Pierson, Handbook of Refractory Carbides and Nitrides, 1st edn (Noyes Co, New Jersey, 1996)

    Google Scholar 

  68. G.R. Razavi, M.S. Rizi, H.M. Zadeh, Effect of a Mo addition on the properties of high-Mn steel. Mater. Tehnol. 47, 611 (2013)

    CAS  Google Scholar 

  69. Y. Funakawa, K. Seto, Coarsening behavior of nanometer-sized carbides in hot-rolled high strength sheet steel. Mater. Sci. Forum. 539, 4813 (2007)

    Article  Google Scholar 

  70. X. Wang, X. Sun, C. Song, H. Chen, S. Tong, W. Han, F. Pan, Evolution of microstructures and mechanical properties during solution treatment of a Ti–V–Mo-containing high-manganese cryogenic steel. Mater. Charact. 135, 287 (2018)

    Article  CAS  Google Scholar 

  71. I. Mejía, A. Bedolla-Jacuinde, J.R. Pablo, Sliding wear behavior of a high-Mn austenitic twinning induced plasticity (TWIP) steel microalloyed with Nb. Wear. 301, 590 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-CONACYT-México) through the project CB-2012-01-0177572. The present research was also supported by the Coordinación de la Investigación Científica-UMSNH (México) (CIC-1.8). D. Mijangos’s studies were sponsored by CONACYT-México, N.B. 740053. Dr. J.M. Cabrera thanks the financial funding from CONACYT-México to partially support his sabbatical leave at UMSNH (CVU 985797).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mejia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijangos, D., Mejia, I. & Cabrera, J.M. Influence of Microalloying Additions (Nb, Ti, Ti/B, V and Mo) on the Microstructure of TWIP Steels. Metallogr. Microstruct. Anal. 11, 524–536 (2022). https://doi.org/10.1007/s13632-022-00871-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00871-w

Keywords

Navigation