Skip to main content
Log in

Orientation-Dependent Tensile Flow Behavior of Zircaloy-4 at Room Temperature

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Present work describes a correlation between texture and sample orientation-based flow parameters of three different zircaloy-4 sheet materials. The three different sheet materials [slab route sheet (SRS), tube route sheet (TRS) and low-oxygen sheet (LOS)] corresponded to three different routes of fabrication and hence represented as variation in starting condition. All the three materials exhibited the presence of moderate texture. The intensity is more in TRS samples in comparison with that of the SRS and LOS. This in turn resulted in moderate values of anisotropy parameters. The strength parameters and elongation values have increased and decreased with increase in strain rate, respectively. The flow behavior of the alloys followed typical Holloman equation. The instantaneous work-hardening rate curves of the present alloys exhibited all the three typical regimes (i.e., regime I, regime II and regime III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B. Lustman, Zirconium technology—twenty years of evolution, in Zirconium in the Nuclear Industry (ASTM International, West Conshohocken, 1979), pp. 5–14. https://doi.org/10.1520/stp36669s

  2. S. Kass, The development of the zircaloys, in Corrosion of Zirconium Alloys (ASTM International, West Conshohocken, 1964), pp. 3–25. https://doi.org/10.1520/stp47070s

  3. J.H. Eyler, Development and Control of the Process for the Manufacture of Zircaloy-4 Tubing for LWBR Fuel Rods (Bettis Atomic Power Lab., West Mifflin, 1981). https://doi.org/10.2172/6780381

    Book  Google Scholar 

  4. D. Fuloria, N. Kumar, S. Goel, R. Jayaganthan, S. Jha, D. Srivastava, Tensile properties and microstructural evolution of Zircaloy-4 processed through rolling at different temperatures. Mater. Des. 103, 40–51 (2016). https://doi.org/10.1016/j.matdes.2016.04.052

    Article  Google Scholar 

  5. E. Tenckhoff, Review of deformation mechanisms, texture, and mechanical anisotropy in zirconium and zirconium base alloys. J. ASTM Int. 2, 25–50 (2005). https://doi.org/10.1520/JAI12945

    Article  Google Scholar 

  6. K.L. Murty, I. Charit, Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy (2006). https://doi.org/10.1016/j.pnucene.2005.09.011

    Google Scholar 

  7. R.G. Ballinger, G.E. Lucas, R.M. Pelloux, The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2. J. Nucl. Mater. 126, 53–69 (1984). https://doi.org/10.1016/0022-3115(84)90532-4

    Article  Google Scholar 

  8. M.J. Philippe, M. Serghat, P. Vanhoutte, C. Esling, Modeling of texture evolution for materials of hexagonal symmetry. 2. Application to zirconium and titanium alpha-alloys or near-alpha-alloys. Acta Metall. 43, 1619–1630 (1995). https://doi.org/10.1016/0956-7151(94)00329-g

    Article  Google Scholar 

  9. R.A. Lebensohn, M.I. González, C.N. Tomé, A.A. Pochettino, 1.4. Mechanical behavior: measurement and prediction of texture development during a rolling sequence of Zircaloy-4 tubes. J. Nucl. Mater. 229, 57–64 (1996). https://doi.org/10.1016/0022-3115(95)00210-3

    Article  Google Scholar 

  10. K.V.M. Krishna, S.K. Sahoo, I. Samajdar, S. Neogy, R. Tewari, D. Srivastava, G.K. Dey, G.H. Das, N. Saibaba, S. Banarjee, Microstructural and textural developments during Zircaloy-4 fuel tube fabrication. J. Nucl. Mater. 383, 78–85 (2008). https://doi.org/10.1016/j.jnucmat.2008.08.050

    Article  Google Scholar 

  11. H. Akhiani, J.A. Szpunar, Effect of surface roughness on the texture and oxidation behavior of Zircaloy-4 cladding tube. Appl. Surf. Sci. 285, 832–839 (2013). https://doi.org/10.1016/j.apsusc.2013.08.137

    Article  Google Scholar 

  12. P. Manda, U. Chakkingal, A.K. Singh, Effect of alloying elements in hot-rolled metastable β-titanium alloys. Part II: mechanical properties. Metall. Mater. Trans. A 47, 3447–3463 (2016). https://doi.org/10.1007/s11661-016-3508-5

    Article  Google Scholar 

  13. G.E. Dieter, D.J. Bacon, Mechanical metallurgy. J. Frankl. Inst. 273, 338 (1962). https://doi.org/10.1016/S0016-0032(62)91145-6

    Google Scholar 

  14. K.V. Jata, A.K. Hopkins, R.J. Rioja, The anisotropy and texture of Al–Li alloys. Mater. Sci. Forum 217–222, 647–652 (1996). https://doi.org/10.4028/www.scientific.net/MSF.217-222.647

    Article  Google Scholar 

  15. S. Banumathy, R.K. Mandal, A.K. Singh, Structure of orthorhombic martensitic phase in binary Ti–Nb alloys. J. Appl. Phys. 106, 93518 (2009). https://doi.org/10.1063/1.3255966

    Article  Google Scholar 

  16. Y.T. Wu, C.H. Koo, Effects of texture on the superplasticity of Ti–25Al–10Nb alloy. Intermetallics 5, 29–36 (1997). https://doi.org/10.1016/S0966-9795(96)00062-3

    Article  Google Scholar 

  17. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill Book Co., Singapore, 1988)

    Google Scholar 

  18. C. Zener, J.H. Hollomon, Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22–32 (1944). https://doi.org/10.1063/1.1707363

    Article  Google Scholar 

  19. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, K. Chattopadhyay, Tensile flow and work hardening behavior of hot cross-rolled AA7010 aluminum alloy sheets. Mater. Sci. Eng., A 577, 87–100 (2013). https://doi.org/10.1016/j.msea.2013.03.079

    Article  Google Scholar 

  20. C. Keller, E. Hug, D. Chateigner, On the origin of the stress decrease for nickel polycrystals with few grains across the thickness. Mater. Sci. Eng., A 500, 207–215 (2009). https://doi.org/10.1016/j.msea.2008.09.054

    Article  Google Scholar 

Download references

Acknowledgements

The financial support received for this research work from Department of Atomic Energy, Government of India, 36(2)/14/56/2014-BRNS/2699 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swadesh Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limbadri, K., Singh, S.K., Satyanarayana, K. et al. Orientation-Dependent Tensile Flow Behavior of Zircaloy-4 at Room Temperature. Metallogr. Microstruct. Anal. 7, 421–433 (2018). https://doi.org/10.1007/s13632-018-0463-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0463-0

Keywords