Skip to main content
Log in

A 1915–2011 microscale record of soil organic matter under wheat cultivation using FTIR-PAS depth-profiling

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Soil organic matter (SOM) is a keystone soil property that influences soil biological, chemical, and physical properties important for soil health. Due to the high fraction of carbon within SOM, soil organic C is an important and readily manageable component of the global carbon cycle. Agroecosystem management practices strongly influence SOM content and structural chemistry. However, there are few sites where long-term effects, e.g., more than 100 years, of agroecosystem management on SOM can be studied. We hypothesized that long-term wheat production and changes in residue management would alter SOM structural chemistry through time and space. Here, soil samples from years 1915, 1938, 1962, 1988, and 2011 were acquired from the continuous wheat with inorganic fertilizer application plot (plot 2) established in the year 1888 at Sanborn Field, Columbia, Missouri, USA. Control soil samples were collected in the year 2011 from a nearby native prairie. SOM structure was analyzed as a function of distance from the particle surface, at the micrometer scale, by Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Our results show that SOM profiles are very heterogeneous, but three different layers were identifiable in spectra collected using FTIR-PAS depth-profiling as follows: (1) a surface layer, ranging 0–20 μm, that exhibits enrichment of C–O bonds, (2) a middle layer, ranging 20–40 μm, displaying an abundance of aromatic C = C bonds, and (3) an inner layer, ranging 40–100 μm, containing more heterocyclic N moieties. Our findings show that transformation of SOM was accelerated during the first 50 years of wheat cropping and fertilization, especially in the surface layer. However, further changes in SOM structure were remarkably retarded between 1962 and 2011 due to a change in cropping practice that retained crop residue on the plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ED:

Euclidean distance

FTIR-PAS:

Fourier transform mid-infrared photoacoustic spectroscopy

PA:

Photoacoustic

PCA:

Principal component analysis

PCA1:

The first principal component

PCA2:

The second principal component

SOC:

Soil organic carbon

SOM:

Soil organic matter

References

  • Benbi DK, Brar JS (2009) A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron Sustain Dev 29:257–265. doi:10.1051/agro.2008070

    Article  CAS  Google Scholar 

  • Buyanovsky GA, Wagner GH (1997) Crop residue input to soil organic matter on Sanborn Field. In: Paul EA, Elliot ET, Paustain K, Cole CV (eds) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, pp 73–83

    Google Scholar 

  • Buyanovsky GA, Brown JR, Wagner GH (1997) Sanborn field: effect of 100 years of cropping on soil parameters influencing productivity. In: Paul EA, Elliot ET, Paustain K, Cole CV (eds) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, pp 205–225

    Google Scholar 

  • Calderon FJ, Reeves JB, Collins EAP (2011) Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy. Soil Sci Soc Am J 75:568–579. doi:10.2136/sssaj2009.0375

    Article  CAS  Google Scholar 

  • Cheshire MV, Dumat C, Fraser AR, Hillier S, Staunton S (2000) The interaction between soil organic matter and soil clay minerals by selective removal and controlled addition of organic matter. Eur J Soil Sci 51:497–509. doi:10.1046/j.1365-2389.2000.00325.x

    Article  Google Scholar 

  • Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic carbon content. Nature 408:789–790. doi:10.1038/35048672

    Article  PubMed  CAS  Google Scholar 

  • Du CW, Zhou JM (2011) Application of infrared photoacoustic spectroscopy in soil analysis. Appl Spectrosc Rev 46:405–422. doi:10.1080/05704928.2011.570837

    Article  CAS  Google Scholar 

  • Du CW, Zhou GQ, Wang HY, Chen XQ, Zhou JM (2010) Depth profiling of clay-xanthan complexes using mid-infrared photoacoustic spectroscopy. J Soils Sediments 10:855–862. doi:10.1007/s11368-010-0225-3

    Article  CAS  Google Scholar 

  • Ellerbrock RH, Gerke HH (2004) Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy. Eur J Soil Sci 55:219–228. doi:10.1046/j.1365-2389.2004.00593.x

    Article  Google Scholar 

  • Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59. doi:10.1038/nature03138

    Article  PubMed  CAS  Google Scholar 

  • Fließbach A, Oberholzer H, Gunst L, Mader P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agr Ecosyst Environ 118:273–284. doi:10.1016/j.agee.2006.05.022

    Article  Google Scholar 

  • Horton R, Wlerenga PJ, Nelsen DR (1983) Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci Soc Am J 47:25–32

    Article  Google Scholar 

  • Huang PM, Wang MK, Chiu CY (2005) Soil mineral-organic matter-microbe interactions: impact on biogeochemical processes and biodiversity in soils. Pedobiologia 49:609–635. doi:10.1016/j.pedobi.2005.06.006

    Article  CAS  Google Scholar 

  • Huang B, Sun W, Zhao Y, Zhu J, Yang R, Zou Z, Ding F, Su J (2007) Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 139:336–345. doi:10.1016/j.geoderma.2007.02.012

    Article  CAS  Google Scholar 

  • Irudayaraj J, Yang H (2002) Depth profiling of a heterogeneous food-packaging model using step-scan Fourier transform infrared photoacoustic spectroscopy. J Food Eng 55:25–33. doi:10.1016/S0260-8774(01)00225-4

    Article  Google Scholar 

  • Kaiserk K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J Soil Sci 54:219–236. doi:10.1046/j.1365-2389.2003.00544.x

    Article  Google Scholar 

  • Kinyangi J, Solomon D, Liang B, Lerotic M, Wirick S, Lehmann J (2006) Nanoscale biogeocomplexity of the organomineral assemblage in soil: application of STXM microscopy and C 1s-NEXAFS spectroscopy. Soil Sci Soc Am J 70:1708–1718. doi:10.2136/sssaj2005.0351

    Article  CAS  Google Scholar 

  • Kleber M, Johnson MG (2010) Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv Agron 106:77–142. doi:10.1016/S0065-2113(10)06003-7

    Article  CAS  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24. doi:10.1007/s10533-007-9103-5

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi:10.1126/science.1097396

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2009) Soils and food sufficiency. A review. Agron Sustain Dev 29:113–133. doi:10.1051/agro:2008044

    Article  Google Scholar 

  • Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C (2008) Spatial complexity of soil organic matter forms at nanometer scales. Nature 1:238–242. doi:10.1038/ngeo155

    CAS  Google Scholar 

  • Ludwig B, Geisseler D, Michel K, Joergensen RG, Schulz E, Merbach I, Raupp J, Rauber R, Hu K, Niu L, Liu X (2011) Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review. Agron Sustain Dev 31:361–372. doi:10.1051/agro/2010030

    Article  Google Scholar 

  • Mahieu N, Olk DC, Randall EW (2000) Accumulation of heterocyclic nitrogen in humified organic matter: 15N-NMR study of wetland rice soils. Eur J Soil Sci 51:379–389. doi:10.1111/j.1365-2389.2000.00328.x

    Article  CAS  Google Scholar 

  • McClelland JF, Jones RW, Bajic SJ (2002) Photoacoustic spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 2. Wiley, Chichester, pp 1231–1251

    Google Scholar 

  • Miles RJ, Brown JR (2011) The Sanborn Field experiment: implications for long-term soil organic carbon levels. Agron J 103:268–278. doi:10.2134/agronj2010.0221s

    Article  CAS  Google Scholar 

  • Movasaghi Z, Rehman S, Rehman IU (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179. doi:10.1080/05704920701829043

    Article  CAS  Google Scholar 

  • Omoike A, Chorover J (2006) Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochim Cosmochim Acta 70:827–838. doi:10.1016/j.gca.2005.10.012

    Article  CAS  Google Scholar 

  • Paustain K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Elliot ET, Paustain K, Cole CV (eds) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, pp 15–49

    Google Scholar 

  • Richter DD, Hofmockel M, Callaham MA, Powlson DS, Smith P (2007) Long-term soil experiments: keys to managing Earth’s rapidly changing ecosystems. Soil Sci Soc Am J 71:266–279. doi:10.2136/sssaj2006.0181

    Article  CAS  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. doi:10.1021/ac60214a047

    Article  CAS  Google Scholar 

  • Schmidt-Rohr K, Mao JD, Olk DC (2004) Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. Proc Natl Acad Sci U S A 101:6351–6354. doi:10.1073/pnas.0401349101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shirshova LT, Ghabbourb EA, Daviesb G (2006) Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma 133:204–216. doi:10.1016/j.geoderma.2005.07.007

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. John Wiley & Sons, NY

    Google Scholar 

  • Urban W, Koenig JL (1986) Depth-profiling studies of double-Layer PVF2-on-PET films by Fourier transform infrared photoacoustic spectroscopy. Appl Spectrosc 40:994–998. doi:10.1366/0003702864507882

    Article  CAS  Google Scholar 

  • van Veen JA, Ladd JN, Amato M (1985) Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with 14C(U) glucose and 15NH4SO4 under different moisture regimes. Soil Biol Biochem 17:747–756. doi:10.1016/0038-0717(85)90128-2

    Article  Google Scholar 

  • Veum KS, Goyne KW, Kremer RJ, Miles RJ, Sudduth KA (2013) Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry. doi:10.1007/s10533-013-9868-7

    Google Scholar 

  • Zoltan B, Andrea P, Gabor S (2011) Photoacoustic instruments for practical applications: present, potentials, and future challenges. Appl Spectrosc Rev 46:1–37. doi:10.1080/05704928.2010.520178

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (41130749) and the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-QN411). The authors also thank Professor John McClelland from Ames Laboratory for his kind help with recording the PA spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwen Du.

About this article

Cite this article

Du, C., Goyne, K.W., Miles, R.J. et al. A 1915–2011 microscale record of soil organic matter under wheat cultivation using FTIR-PAS depth-profiling. Agron. Sustain. Dev. 34, 803–811 (2014). https://doi.org/10.1007/s13593-013-0201-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0201-6

Keywords

Navigation