Skip to main content

Advertisement

Log in

Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The diversity of growing conditions and the development of new outlets for agricultural products favour a diversity of crop management systems requiring various cultivars, with specific characteristics. Genotype performance is usually assessed through multi-environment trials comparing a variable number of genotypes grown in a wide range of soils, climatic conditions and cropping systems. Field experiments show empirical evidence for the interactions between genotype, environment and cropping system. However, such interactions are rarely taken into account to design ideotypes or for cultivar assessment, or in the definition of crop management plans adapted to cultivars. Agronomic models, built to simulate the dynamic response of crops to their environment, and thus to techniques which modify it, appear to be appropriate tools to evaluate and predict these interactions. This paper reviews the three main uses of model-based predictions of the interactions between genotype, environment and cropping system: definition of breeding targets, characterisation of the environments in cultivar experiments and support for the choice of the best cultivar to grow in a given situation. Models specifically allow understanding the influence of one or a combination of specific traits on performances and long-term ecological impacts. We show that a diversity of models is required, from physiologically based crop models to agroecology-based cropping system or landscape models, able to account well for farmers’ practices. A way of taking cultivars into account in crop models is proposed, based on three main steps: the choice of the model, the identification and estimation of its cultivar parameters, and testing the model for decision support. Finally, the analysis of the limitations for wider use of crop models in variety breeding and assessment addresses some major questions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal PK, Kropff MJ, Cassman KG, ten Berge HFM (1997) Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments. Field Crops Res 51:5–17. doi:10.1016/S0378-4290(96)01044-1

    Google Scholar 

  • Agüera F, Villalobos FJ, Orgaz F (1997) Evaluation of sunflower (Heliantus annuus, L.) genotypes differing in early vigour using a simulation model. Eur J Agr 7:109–118. doi:10.1016/S1161-0301(97)00023-3

    Google Scholar 

  • Argillier O, Hébert Y, Barrière Y (1994) Statistical analysis and interpretation of line x environment interaction for biomass yield in maize. Agronomie 14:661–672. doi:10.1051/agro:19941003

    Google Scholar 

  • Asseng S, Turner NC (2007) Modelling genotype × environment × management interactions to improve yield, water use efficiency and grain protein content in wheat. In: Spiertz J H J et al. (eds.) Scale and complexity in plant systems research: gene–plant–crop relations, Springer, pp 93–104

  • Asseng S, Turner NC, Ray JD, Keating BA (2002) A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. Eur J Agr 17:123–141. doi:10.1016/S1161-0301(01)00149-6

    Google Scholar 

  • Asseng S, Turner NC, Botwright T, Condon AG (2003) Evaluating the impact of a trait for increased specific leaf area on wheat yields using a crop simulation model. Agron J 95:10–19. doi:10.2134/agronj2003.1000

    Google Scholar 

  • Aubertot JN, Pinochet X, Doré T (2004) The effects of sowing date and nitrogen availability during vegetative stages on Leptosphaeria maculans development on winter oilseed rape. Crop Prot 23(7):635–645. doi:10.1016/j.cropro.2003.11.015

    Google Scholar 

  • Bannayan M, Hoogenboom G (2009) Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Res 111:290–302. doi:10.1016/j.fcr.2009.01.007

    Google Scholar 

  • Bannayan M, Crout MJ, Hoogenboom G (2003) Application of the CERES-wheat model for within season prediction of winter wheat yield in the United Kingdom. Agron J 95:114–125. doi:10.2134/agronj2003.1140

    Google Scholar 

  • Banziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manag 80:212–224. doi:10.1016/j.agwat.2005.07.014

    Google Scholar 

  • Barbottin A (2004) Utilisation d'un modèle de culture pour évaluer le comportement des génotypes: Pertinence de l'utilisation d'Azodyn pour analyser la variabilité du rendement et de la teneur en protéines du blé tendre. Thèse de Doctorat, INA P-G, Paris

  • Barbottin A, Lecomte C, Bouchard C, Jeuffroy MH (2005) Nitrogen remobilisation during grain filling in wheat: genotypic and environmental effects. Crop Sci 45:1141–1150. doi:10.2135/cropsci2003.0361

    Google Scholar 

  • Barbottin A, Le Bail M, Jeuffroy MH (2006) The Azodyn crop model as a decision support tool for choosing cultivars. Agron Sustain Dev 26:107–115. doi:10.1051/agro:2006003

    Google Scholar 

  • Baril CP (1992) Factor regression for interpreting genotype–environment interaction in bread wheat trials. Theor Appl Genet 83:1022–1026. doi:10.1007/BF00232967

    CAS  PubMed  Google Scholar 

  • Batchelor WD, Paz JO, Jones JW (2003) Estimating break-even cost to move from single to multiple soybean variety management within a field. In: Proc. 4th European Conference on Precision Agriculture, Berlin (Germany), 15–19 June 2003, pp 69–74

  • Baumhardt RL, Howell TA (2006) Seeding practices, cultivar maturity, and irrigation effects on simulated grain sorghum yield. Agron J 98:462–470. doi:10.2134/agronj2005.0156

    Google Scholar 

  • Becker HC, Leon J (1988) Stability analysis in plant-breeding. Plant Breed 101:1–23. doi:10.1111/j.1439-0523.1988.tb00261.x

    Google Scholar 

  • Biarnès-Dumoulin V, Denis JB, Lejeune-Hénaut I, Etévé G (1996) Interpreting yield instability in pea using genotypic and environmental covariates. Crop Sci 36:115–120. doi:10.2135/cropsci1996.0011183X003600010021x

    Google Scholar 

  • Boote KJ, Jones JW, Pickering NB (1996) potential uses and limitations of crop models. Agron J 88:704–716. doi:10.2134/agronj1996.00021962008800050005x

    Google Scholar 

  • Boote KJ, Kropff MJ, Bindraban PS (2001) Physiology and modelling of traits in crop plants: implications for genetic improvement. Agric Syst 70:395–420. doi:10.1016/S0308-521X(01)00053-1

    Google Scholar 

  • Boote KJ, Jones JW, Batchelor WD, Nafziger ED, Myers O (2003) Genetic coefficients in the CROPGRO-soybean model: links to field performance and genomics. Agron J 95:32–51. doi:10.2134/agronj2003.3200

    Google Scholar 

  • Brancourt-Hulmel M, Biarnès-Dumoulin V, Denis JB (1997) Points de repère dans l'analyse de la stabilité et de l'interaction génotype-milieu en amélioration des plantes. Agronomie 17:219–246. doi:10.1051/agro:19970403

    Google Scholar 

  • Brancourt-Hulmel M, Lecomte C, Meynard JM (1999) A diagnosis of yield-limiting factors on probe genotypes for characterizing environments in winter wheat trials. Crop Sci 39:1798–1808. doi:10.2135/cropsci1999.3961798x

    Google Scholar 

  • Brancourt-Hulmel M, Denis JB, Lecomte C (2000) Determining environmental covariates which explain genotype environment interaction in winter wheat through probe genotypes and biadditive factorial regression. Theor App Genet 100:285–298. doi:10.1007/s001220050038

    Google Scholar 

  • Brisson N, Ruget F, Gate P, Lorgeou J, Nicoullaud B, Tayot X, Plenet D, Jeuffroy MH, Bouthier A, Ripoche D, Mary B, Justes E (2002) STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie 22:69–92. doi:10.1051/agro:2001005

    Google Scholar 

  • Casadebaig P, Debaeke P, Lecoeur J (2008) Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. Eur J Agr 28:646–654. doi:10.1016/j.eja.2008.02.001

    Google Scholar 

  • Casadebaig P, Guilioni L, Lecoeur J, Christophe A, Champolivier L, Debaeke P (2011) SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agric For Meteorol 151:163–178. doi:10.1016/j.agrformet.2010.09.012

    Google Scholar 

  • Chapman SC (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding material. Euphytica 161:195–208. doi:10.1007/s10681-007-9623-z

    Google Scholar 

  • Chapman SC, Hammer GL, Butler DG, Cooper M (2000) Genotype by environment interactions affecting grain sorghum. III. Temporal sequences and spatial patterns in the target population of environments. Aust J Agric Res 51:223–233. doi:10.1071/AR99022

    Google Scholar 

  • Chapman SC, Cooper M, Hammer GL (2002) Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments. Aust J Agric Res 53:379–389. doi:10.1071/AR01070

    Google Scholar 

  • Chapman S, Cooper M, Podlich D, Hammer GL (2003) Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron J 95:99–113. doi:10.2134/agronj2003.9900

    Google Scholar 

  • Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman SC (2011) Environment characterization as an aid to wheat improvement: interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. J Exp Bot 62:1743–1755. doi:10.1093/jxb/erq459

    CAS  PubMed  Google Scholar 

  • Colson J, Bouniols A, Jones JW (1995) Soybean reproductive development: Adapting a model for european cultivars. Agron J 87:1129–1139. doi:10.2134/agronj1995.00021962008700060015x

    Google Scholar 

  • Cooper M, Hammer GL (1996) Plant adaptation and crop improvement. CAB International, Wallingford, UK

    Google Scholar 

  • Cox MC, Qualset CO, Rains DW (1986) Genetic-variation for nitrogen assimilation and translocation in wheat. 3. Nitrogen translocation in relation to grain-yield and protein. Crop Sci 26:737–740. doi:10.2135/cropsci1986.0011183X002600040022x

    Google Scholar 

  • Debaeke P (2004) Scenario analysis for cereal management in water-limited conditions by the means of a crop simulation model (STICS). Agronomie 24:315–326. doi:10.1051/agro:2004035

    Google Scholar 

  • Debaeke P, Nolot JM (2006) A rule-based method for the development of crop management systems applied to grain sorghum in south-western France. Agric Sys 90:180–201. doi:10.1016/j.agsy.2006.01.001

    Google Scholar 

  • Debaeke P, Casadebaig P, Mestries E, Palleau JP, Salvi F, Bertoux V, Uyttewaal V (2011) Evaluer et valoriser les interactions variété-milieu-conduite en tournesol. Innovations Agronomiques 14:77–90

    Google Scholar 

  • Desclaux D (1996) De l’intérêt de génotypes révélateurs de facteurs limitants dans l’analyse des interactions génotype*milieu chez le soja (Glycine max. L. Merill). Thèse de doctorat. Institut national polytechnique de Toulouse, Toulouse, France.

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403. doi:10.1007/BF00056241

    Google Scholar 

  • Epinat-Le Signor C, Dousse S, Lorgeou J, Denis JB, Bonhomme R, Carolo P, Charcosset A (2001) Interpretation of genotype × environment interactions for early maize hybrids over 12 years. Crop Sci 41:663–669. doi:10.2135/cropsci2001.413663x

    Google Scholar 

  • Fargue A, Colbach N, Meynard JM (2005) Introduction of genotypic effects into GeneSys-rape: the example of height and male sterility. Agric Ecosys Env 108:318–328. doi:10.1016/j.agee.2005.01.010

    Google Scholar 

  • Fargue A, Colbach N, Pierre J, Picault H, Renard M, Meynard JM (2006) Predictive study of the advantages of cleistogamy in oilseed rape in limiting unwanted gene flow. Euphytica 151:1–13. doi:10.1007/s10681-005-9005-3

    Google Scholar 

  • Foucteau V, El Daouk M, Baril C (2001) Interpretation of genotype by environment interaction in two sunflower experimental networks. Theor App Genet 102:327–334. doi:10.1007/s001220051649

    Google Scholar 

  • Goyne PJ, Meinke H, Milroy SP, Hammer GL, Hare JM (1996) Development and use of a barley crop simulation model to evaluate production management strategies in north-eastern Australia. Aust J Agric Res 47:997–1015. doi:10.1071/AR9960997

    Google Scholar 

  • Hammer GL, Goyne PJ, Woodruff DR (1982) Phenology of sunflower cultivars. III. Models for prediction in field environments. Aust J Agric Res 33:251–261. doi:10.1071/AR9820263

    Google Scholar 

  • Hammer GL, Butler DG, Muchow RC, Meinke H (1996) Integrating physiological understanding and plant breeding via crop modelling and optimization. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford (UK), pp 419–441

    Google Scholar 

  • Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2003) Future contributions of crop modeling—from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur J Agr 18:15–31. doi:10.1016/S1161-0301(02)00093-X

    Google Scholar 

  • Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, Harland P, Muchow RC (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J Exp Bot 61:2185–2202. doi:10.1093/jxb/erq095

    CAS  PubMed  Google Scholar 

  • Hoogenboom G, White JW, Acosta-Gallegos J, Gaudiel RG, Myers JR, Silbernagel MJ (1997) Evaluation of a crop simulation model that incorporates gene action. Agron J 89:613–620. doi:10.2134/agronj1997.00021962008900040013x

    Google Scholar 

  • Hoogenboom G, White JW, Messina CD (2004) From genome to crop: integration through simulation modeling. Field Crops Res 90:145–163. doi:10.1016/j.fcr.2004.07.014

    Google Scholar 

  • Houlès V, Mary B, Guérif M, Makowski D, Justes E (2004) Evaluation of the ability of the crop model STICS to recommend nitrogen fertilization rates according to agro-environmental criteria. Agronomie 24:339–349. doi:10.1051/agro:2004036

    Google Scholar 

  • Hunt LA, Reynolds MP, Sayre KD, Rajaram S, White JW, Yan W (2003) Crop modeling and the identification of stable coefficient that may reflect significant groups of genes. Agron J 95:20–31. doi:10.2134/agronj2003.2000

    Google Scholar 

  • Irmak A, Jones JW, Mavromatis T, Welch SM, Boote KJ, Wilkerson GG (2000) Evaluating methods for simulating soybean cultivar responses using cross validation. Agron J 92:1140–1149. doi:10.2134/agronj2000.9261140x

    CAS  Google Scholar 

  • Jackson P, Robertson M, Cooper M, Hammer G (1996) The role of physiological understanding in plant breeding, from a breeding perspective. Field Crops Res 49:11–37. doi:10.1016/S0378-4290(96)01012-X

    Google Scholar 

  • Jeuffroy MH, Barré C, Bouchard C, Demotes-Mainard S, Devienne-Barret F, Girard ML, Recous S (2000) Fonctionnement d’un peuplement de blé en conditions de nutrition azotée sub-optimale. In: Bonhomme R, Maillard P (eds) Fonctionnement des peuplements végétaux sous contraintes environnementales. INRA, Paris, Les Colloques n°93, pp 289–304

  • Jeuffroy MH, Barbottin A, Jones JW, Lecoeur J (2006) Crop-models with genotype parameters. In: Wallach D, Makowski D, Jones JW (eds) Working with dynamic crop models—evaluation, analysis, parameterization and applications. Elsevier, Amsterdam (The Netherlands), pp 281–307

    Google Scholar 

  • Jeuffroy MH, Vocanson A, Roger-Estrade J, Meynard JM (2012) The use of models at field and farm levels for the ex ante assessment of new pea genotypes. Eur J Agr 42:68–78. doi:10.1016/j.eja.2012.04.005

    Google Scholar 

  • Lamboni M, Makowski D, Lehuger S, Gabrielle B, Monod H (2009) Multivariate global sensitivity analysis for dynamic crop models. Field Crops Res 113:312–320. doi:10.1016/j.fcr.2009.06.007

    Google Scholar 

  • Le May C, Schoeny A, Tivoli B, Ney B (2005) Improvement and validation of a pea crop growth model to simulate the growth of cultivars infected with Ascochyta blight (Mycosphaerella pinodes). Eur J Plant Pathol 112:1–12. doi:10.1007/s10658-004-5272-4

    Google Scholar 

  • Lecomte C (2005) “L’évaluation expérimentale des innovations variétales. Proposition d'outils d'analyse de l'interaction genotype—milieu adaptés à la diversité des besoins et des contraintes des acteurs de la filière semences,” Thèse INA P-G, Paris

  • Lecomte C, Prost L, Cerf M, Meynard JM (2010) Basis for designing a tool to evaluate new cultivars. Agron Sustain Dev 30:667–677. doi:10.1051/agro/2009042

    Google Scholar 

  • Leenhardt D, Trouvat JL, Gonzalès G, Pérarnaud V, Prats S, Bergez JE (2004) Estimating irrigation demand for water management on a regional scale: I. ADEAUMIS, a simulation platform based on bio-decisional modelling and spatial information. Agric Water Manag 68:207–232. doi:10.1016/j.agwat.2004.04.004

    Google Scholar 

  • Liu WTH (1989) Application of CERES-MAIZE model to yield prediction of Brazilian maize hybrid. Agric Forest Meteor 45:299–312. doi:10.1016/0168-1923(89)90050-6

    Google Scholar 

  • Loyce C, Rellier JP, Meynard JM (2002a) Management planning for winter wheat with multiple objectives (1): the BETHA system. Agric Syst 72(1):9–31. doi:10.1016/S0308-521X(01)00064-6

    Google Scholar 

  • Loyce C, Rellier JP, Meynard JM (2002b) Management planning for winter wheat with multiple objectives (2): ethanol-wheat production. Agric Syst 72(1):33–57. doi:10.1016/S0308-521X(01)00065-8

    Google Scholar 

  • Loyce C, Meynard JM, Bouchard C, Rolland B, Lonnet P, Bataillon P, Bernicot MH, Bonnefoy M, Charrier X, Debote B, Demarquet T, Duperrier B, Félix I, Heddadj D, Leblanc O, Leleu M, Mangin P, Méausoone M, Doussinault G (2008) Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield. Crop Prot 27:1131–1142. doi:10.1016/j.cropro.2008.02.001

    Google Scholar 

  • Makowski D, Hillier J, Wallach D, Andrieu B, Jeuffroy MH (2006a) Parameter estimation for crop models. In: Makowski D, Jones JW, Wallach D (eds) Working with dynamic crop models. Elsevier, New York, pp 101–149

  • Makowski D, Naud C, Jeuffroy MH, Barbottin A, Monod H (2006b) Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model predictions. Reliab Eng Syst Saf 91:1142–1147. doi:10.1016/j.ress.2005.11.015

    Google Scholar 

  • Makowski D, Doré T, Monod H (2007) A new method to analyse relationships between yield components with boundary lines. Agron Sustain Dev 27:119–128. doi:10.1051/agro:2006029

    Google Scholar 

  • Matthews RB (2002) Crop genotype improvement. In: Matthews R, Stephens W (eds) Crop-soil simulation models: applications in developing countries. CAB International, Wallingford (UK), pp 13–28

    Google Scholar 

  • Mavromatis T, Boote KJ, Jones JW, Irmak A, Shinde D, Hoogenboom G (2001) Developing genetic coefficients for crop simulation models with data from crop performance trials. Crop Sci 41:40–51. doi:10.2135/cropsci2001.41140x

    Google Scholar 

  • Mavromatis T, Boote KJ, Jones JW, Wilkerson GG, Hoogenboom G (2002) Repeatability of model genetic coefficients derived from soybean performances trials across different states. Crop Sci 42:76–89. doi:10.2135/cropsci2002.7600

    PubMed  Google Scholar 

  • Messina CD, Boote KJ, Löffler C, Jones JW, Vallejos CE (2006) Model-assisted genetic improvement of crops. In: Wallach D, Makowski D, Jones JW (eds) Working with dynamic crop models—evaluation, analysis, parameterization and applications. Elsevier, Amsterdam (The Netherlands), pp 309–335

    Google Scholar 

  • Meynard JM, Jeuffroy MH (2002) Progrès génétique et agriculture durable. Le Sélectionneur Français 53:69–82

    Google Scholar 

  • Muchow RC, Hammer GL, Carberry PS (1991) Optimizing crop and cultivar selection in response to climatic risk. In: Muchow RC, Bellamy JA (eds) Climatic risk in crop production—models and management for the semiarid tropics and subtropics. CAB International, Wallingford (UK), pp 235–262

    Google Scholar 

  • Muchow RC, Hammer GL, Vanderlip RL (1994) Assessing climatic risk to sorghum production in water-limited subtropical environments. II. Effects of planting date, soil water at planting, and cultivar phenology. Field Crops Res 36:235–246. doi:10.1016/0378-4290(94)90115-5

    Google Scholar 

  • Naud C, Makowski D, Jeuffroy MH (2007) An interacting particle filter to improve model-based predictions of nitrogen nutrition index for winter wheat. Ecol Model 207:251–263. doi:10.1016/j.ecolmodel.2007.05.003

    Google Scholar 

  • Olesen JE, Hansen PK, Berntsen J, Christensen S (2004) Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crops Res 89:263–280. doi:10.1016/j.fcr.2004.02.005

    Google Scholar 

  • Piper EL, Boote KJ (1993) Temperature and cultivar effects on soybean seed oil and protein concentrations. J Am Oil Chem Soc 76:1233–1241. doi:10.1007/s11746-999-0099-y

    Google Scholar 

  • Reymond M (2001) Variabilité génétique des réponses de la croissance foliaire du maïs à la température et au déficit hydrique. Combinaison d'un modèle écophysiologique et d'une analyse QTL. Thèse de l'ENSAM, Montpellier

    Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166. doi:10.1007/BF00024012

    CAS  Google Scholar 

  • Saulescu NN, Kronstad WE (1995) Growth simulation outputs for detection of differential cultivar response to environmental factors. Crop Sci 35:773–778. doi:10.2135/cropsci1995.0011183X003500030023x

    Google Scholar 

  • Sedgley RH (1991) An appraisal of the Donald ideotype after 21 years. Field Crops Res 26:93–112. doi:10.1016/0378-4290(91)90031-P

    Google Scholar 

  • Semenov MA, Martre P, Jamieson PD (2009) Quantifying effects of simple wheat traits on yield in water-limited environments using a modelling approach. Agric For Metor 149:1095–1104. doi:10.1016/j.agrformet.2009.01.006

    Google Scholar 

  • Shorter R, Lawn RJ, Hammer GL (1991) Improving genotypic adaptation in crops—a role for breeders, physiologists and modellers. Exp Agric 27:155–175. doi:10.1017/S0014479700018810

    Google Scholar 

  • Sinclair TR, Muchow RC (2001) System analysis of plant traits to increase grain yield on limited water supplies. Agron J 93:263–270. doi:10.2134/agronj2001.932263x

    Google Scholar 

  • Singels A, de Jager JM (1991) Determination of optimum wheat cultivar characteristics using a growth model. Agric Syst 37:25–38. doi:10.1016/0308-521X(91)90045-C

    Google Scholar 

  • Stapper M, Harris HC (1989) Assessing the productivity of wheat genotypes in a Mediterranean climate, using a crop-simulation model. Field Crops Res 20:129–152. doi:10.1016/0378-4290(89)90057-9

    Google Scholar 

  • Suriharn B, Patanothai A, Boote KJ, Hoogenboom G (2011) Designing a peanut ideotype for a target environment using the CSM-CROPGRO-Peanut model. Crop Sci 51:1887–1902. doi:10.2135/cropsci2010.08.0457

    Google Scholar 

  • Travasso MI, Magrin GO (1998) Utility of CERES-barley under Argentine conditions. Field Crops Res 57:329–333. doi:10.1016/S0378-4290(98)00079-3

    Google Scholar 

  • Van Eeuwijk FA, Keizer LCP, Bakker JJ (1995) Linear and bilinear models for the analysis of multienvironment trials: II. An application to data from the Dutch Maize Variety Trials. Euphytica 84:9–22. doi:10.1007/BF01677552

    Google Scholar 

  • Vear F, Bony H, Joubert G, Tourvieille de Labrouhe D, Pauchet I, Pinochet X (2003) The results of 30 years of sunflower breeding for France. OCL 10:66–73

    Google Scholar 

  • Villalobos FJ, Hall AJ, Richie JT, Orgaz F (1996) OILCROP-SUN: a development, growth, and yield model of the sunflower crop. Agron J 88:403–415. doi:10.2134/agronj1996.00021962008800030008x

    Google Scholar 

  • Voltas J, van Eeuwijk FA, Sombrero A, Lafarga A, Igartua E, Romagosa I (1999a) Integrating statistical and ecophysiological analyses of genotype by environment interaction for grain filling of barley I.: Individual grain weight. Field Crops Res 62:63–74. doi:10.1016/S0378-4290(99)00006-4

    Google Scholar 

  • Voltas J, van Eeuwijk FA, Araus JL, Romagosa I (1999b) Integrating statistical and ecophysiological analyses of genotype by environment interaction for grain filling of barley II.: Grain growth. Field Crops Res 62:75–84. doi:10.1016/S0378-4290(99)00007-6

    Google Scholar 

  • Wallach D, Goffinet B (1987) Mean squared error of prediction in models for studying ecological and agronomic systems. Biometrics 43:561–573

    Google Scholar 

  • Wallach D, Goffinet B (1989) Mean squared error of prediction as a criterion for evaluating and comparing systems models. Ecol Model 44:299–306. doi:10.1016/0304-3800(89)90035-5

    Google Scholar 

  • Wallach D, Goffinet B, Bergez JE, Debaeke P, Leenhardt D, Aubertot JN (2001) Parameter estimation for crop models: a new approach and application to corn model. Agron J 93:757–766. doi:10.2134/agronj2001.934757x

    Google Scholar 

  • Whisler FD, Acock B, Baker DN, Fye RE, Hodges HF, Lambert JR, Lemmon HE, McKinion JM, Reddy VR (1986) Crop simulation models in agronomic systems. Adv Agron 40:141–208. doi:10.1016/S0065-2113(08)60282-5

    Google Scholar 

  • White JW, Hoogenboom G (1996) Simulating effects of genes for physiological traits in a process-oriented crop model. Agron J 88:416–422. doi:10.2134/agronj1996.00021962008800030009x

    Google Scholar 

  • Yin X, Struik PC (2010) Modelling the crop: from system dynamics to systems biology. J Exp Bot 61:2171–2183. doi:10.1093/jxb/erp375

    CAS  PubMed  Google Scholar 

  • Yin X, van Laar HH (2005) Crop systems dynamics: an ecophysiological simulation model for genotype-by-environment interactions. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Yin X, Kropff MJ, Goudriaan J, Stam P (2000) A model analysis of yield differences among recombinant inbreed lines in barley. Agron J 92:114–120. doi:10.2134/agronj2000.921114x

    Google Scholar 

  • Yin X, Stam P, Kropff MJ, Schapendonk AHCM (2003) Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron J 95:90–98. doi:10.2134/agronj2003.9000

    CAS  Google Scholar 

  • Zhang XY (2005) Modélisation de la réponse des variétés de blé au niveau d'intensification. Influence de la pression de maladies foliaires, Thèse INA P-G, Paris

  • Zhang XY, Loyce C, Meynard JM, Savary S (2006) Characterization of multiple disease systems and cultivar susceptibilities for the analysis of yield losses in winter wheat. Crop Prot 25:1013–1023. doi:10.1016/j.cropro.2006.01.013

    Google Scholar 

  • Zhang XY, Loyce C, Meynard JM, Monod H (2007) Modeling the effects of cultivar resistance on yield losses of winter wheat in natural multiple disease conditions. Eur J Agr 26:384–393. doi:10.1016/j.eja.2006.12.004

    Google Scholar 

Download references

Acknowledgements

The authors thank Alan Scaife for the English language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Hélène Jeuffroy.

About this article

Cite this article

Jeuffroy, MH., Casadebaig, P., Debaeke, P. et al. Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review. Agron. Sustain. Dev. 34, 121–137 (2014). https://doi.org/10.1007/s13593-013-0170-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0170-9

Keywords

Navigation