Skip to main content
Log in

Silicon-mediated enhancement of physiological and biochemical characteristics of Zinnia elegans ‘Dreamland Yellow’ grown under salinity stress

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the effects of silicon (Si) nutrition on hydroponically grown Zinnia elegans under salinity stress. In this study, six treatments, the control (basal nutrients without NaCl or Si), Si 50 (1.8 mM), Si 100 (3.6 mM), NaCl 50 (50 mM), Si 50 + NaCl 50 (1.8 mM Si; 50 mM NaCl), and Si 100 + NaCl 50 (Si-3.6 mM + NaCl-50 mM), were employed. After 15 days of treatment, growth parameters, biochemical measurements, and antioxidant enzyme activities were examined. Salinity stress significantly reduced plant growth, biomass, photosynthetic parameters, and pigments, and increased the electrolyte leakage potential (ELP), lipid peroxidation, and hydrogen peroxide level. Interestingly, with Si supplementation, Z. elegans recovered from salinity stress. Si enhanced growth and photosynthesis, and prevented the decomposition of photosynthetic pigments. Moreover, the addition of Si increased membrane integrity, thereby reducing the ELP and lipid peroxidation levels under salinity stress. Furthermore, Si modulated the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) in scavenging excess reactive oxygen species (ROS). Additionally, Si increased the macronutrient and micronutrient contents. Therefore, augmentation with Si provided salinity resistance and enhanced the growth of Z. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agarie, S., N. Hanaoka, O. Ueno, A. Miyazaki, F. Kubota, W. Agata, and P.B. Kaufman. 1998. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1:96–103.

    Article  Google Scholar 

  • Ahmad, R., S.H. Zaheer, and S. Ismail. 1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci. 85:43–50.

    Article  CAS  Google Scholar 

  • Ahmed, M., M. Asif, and F.U. Hassan. 2014. Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiol. Plant. 36:473–483.

    Article  CAS  Google Scholar 

  • Al-Aghabary, K., Z.J. Zhu, and Q.H. Shi. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 27:2101–2115.

    Article  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24:1–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ashraf, M., M. Rahmatullah, M. Afzal, R. Ahmed, F. Mujeeb, A. Sarwar, and L. Ali. 2010. Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391.

    Article  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak, I. and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98:1222–1227.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Campos, P.S., V.N. Quartin, J.C. Ramalho, and M.A. Nunes. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol. 160:283–292.

    Article  PubMed  CAS  Google Scholar 

  • Christou, A., G.A. Manganaris, and V. Fotopoulos. 2014. Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environ. Exp. Bot. 107:46–54.

    Article  CAS  Google Scholar 

  • Cramer, G. R., E. Epstein, and A. Läuchli. 1991. Effects of sodium, potassium and calcium on saltstressed barley. Physiol. Plant. 81:197–202.

    Article  CAS  Google Scholar 

  • Demidchik, V., D. Straltsova, S.S. Medvedev, G.A. Pozhvanov, A. Sokolik, and V. Yurin. 2014. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 65:1259–1270.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, C.L. and H.S. George. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem. 39:1118–1119.

    Article  CAS  Google Scholar 

  • Feng, J., Q. Shi, X. Wang, M. Wei, F. Yang, and H. Xu. 2010. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci. Hortic. 123:521–530.

    Article  CAS  Google Scholar 

  • Frantz, J.M., J.C. Locke, L. Datnoff, M. Omer, A. Widrig, D. Sturtz, L. Horst, and C.R. Krause. 2008. Detection, distribution, and quantification of silicon in floricultural crops utilizing three distinct analytical methods. Commun. Soil Sci. Plant Anal. 39:2734–2751.

    Article  CAS  Google Scholar 

  • Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutases. Plant Physiol. 59:309–314.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909–930.

    Article  PubMed  CAS  Google Scholar 

  • Gong, H., X. Zhu, K. Chen, S. Wang, and C. Zhang. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169:313–321.

    Article  CAS  Google Scholar 

  • Gottardi, S., F. Iacuzzo, N. Tomasi, G. Cortella, L. Manzocco, R. Pinton, V. Romheld, T. Mimmo, M. Scanpicchio, L. Dalla-Costa, and S. Cesco. 2012. Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiol. Biochem. 56:14–23.

    Article  PubMed  CAS  Google Scholar 

  • Gunes, A., A. Inal, M. Alpaslan, F. Eraslan, E.G. Bagci, and N. Cicek. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 164:728–736.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. and J.M.C. Gutteridge. 2007. Free radicals in biology and medicine. 4th edition. Oxford: Oxford University Press.

    Google Scholar 

  • He, Y., H. Xiao., H. Wang, Y. Chen, and M. Yu. 2010. Effect of silicon on chilling-induced changes of solutes, antioxidants, and membrane stability in seashore paspalum turfgrass. Acta Physiol. Plant. 32:487–494.

    Article  CAS  Google Scholar 

  • Hwang, S.J., M. Hamayun, H.Y. Kim, C.I. Na, K.U. Kim, D.H. Shin, S.Y. Kim, and I.J. Lee. 2007. Effect of nitrogen and silicon nutrition on bioactive gibberellin and growth of rice under field conditions. J. Crop Sci. Biotechnol. 10:281–286.

    Google Scholar 

  • Kamenidou, S., T.J. Cavins, and S. Marek. 2008. Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. HortScience 43:236–239.

    CAS  Google Scholar 

  • Liang, Y. 1999. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224.

    Article  CAS  Google Scholar 

  • Liang, Y., W. Sun, Y.G. Zhu, and P. Christie. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 147:422–428.

    Article  PubMed  CAS  Google Scholar 

  • Liu, P., L. Yin, X. Deng, S. Wang, K. Tanaka, and S. Zhang. 2014. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J. Exp. Bot. 1:1–10.

    Google Scholar 

  • Ma, J.F. and E. Takashi. 1991. Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant Soil 133:151–155.

    Article  CAS  Google Scholar 

  • Ma, J.F. and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392–397.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.F. and N. Yamaji. 2008. Functions and transport of silicon in plants. Cell. Mol. Life Sci. 65:3049–3057.

    Article  PubMed  CAS  Google Scholar 

  • Manivannan, A., P. Soundararajan, N. Halimah, C.H. Ko, and B.R. Jeong. 2015. Blue LED Light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic. Environ. Biotechnol. 56:105–113.

    Article  CAS  Google Scholar 

  • Matoh, T., P. Kairusmee, and E. Takahashi. 1986. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci. Plant Nutr. 32:295–304.

    Article  CAS  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405–410.

    Article  PubMed  CAS  Google Scholar 

  • Muneer, S., Y.G. Park, A. Manivannan, P. Soundararajan, and B.R. Jeong. 2014. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity Stress. Int. J. Mol. Sci. 15:21803–21824.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murillo-Amador, B., S. Yamada, T. Yamaguchi, E. Rueda-Puente, N. Avila-Serrano, J.L. Garcia-Hernandez, R. Lopez-Aguilar, E. Troyo-Dieguez, and A. Nieto-Garibay. 2007. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J. Agron. Crop Sci. 193:413–421.

    Article  CAS  Google Scholar 

  • Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  • Neumann, D. and U. zur Nieden. 2001. Silicon and heavy metal tolerance of higher plants. Phytochemisty 56:685–692.

    Article  CAS  Google Scholar 

  • Perez-Alfocea, F., M.E. Balibrea, A. Santa Cruz, and M.T. Estan. 1996. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180:251–257.

    Article  CAS  Google Scholar 

  • Ranger, C.M., A.P. Singh, J.M. Frantz, L. Canas, J.C. Locke, M.E. Reding, and N. Vorsa. 2009. Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environ. Entomol. 38:129–136.

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg, H. 1980. Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21:2771–2781.

    Article  Google Scholar 

  • Romero-Aranda, M.R., O. Jurado, and J. Cuarterp. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 163:847–855.

    Article  PubMed  CAS  Google Scholar 

  • Shah, K., R.G. Kumar, S. Verma, and R.S. Dubey. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161:1135–1144.

    Article  CAS  Google Scholar 

  • Shen, X., X. Xiao, Z. Dong, and Y. Chen. 2014. Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiol. Plant. 36:3063–3069.

    Article  CAS  Google Scholar 

  • Shi, Q., Z. Bao, Z. Zhu, Y. He, Q. Qian, and J. Yu. 2005. Siliconmediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559.

    Article  PubMed  CAS  Google Scholar 

  • Sivanesan, I., J.Y. Song, S.J. Hwang, and B.R. Jeong. 2011. Micropropagation of Cotoneaster wilsonii Nakai a rare endemic ornamental plant. Plant Cell Tissue Organ Cult. 105:55–63.

    Article  Google Scholar 

  • Sivanesan, I., M.S. Son, P. Soundararajan, and B.R. Jeong. 2014. Effect of silicon on growth and temperature stress tolerance of Nephrolepis exaltata ‘Corditas’. Korean J. Hortic. Sci. 32:142–148.

    Article  CAS  Google Scholar 

  • Soundararajan, P., I. Sivanesan, S. Jana, and B.R. Jeong. 2014. Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Hortic. Environ. Biotechnol. 55:271–279.

    Article  CAS  Google Scholar 

  • Tuna, A.L., C. Kaya, D. Higgs, B. Murillo-Amador, S. Aydemir, and A.R. Girgin. 2008. Silicon improves salinity tolerance in wheat plants. Environ. Exp. Bot. 62:10–16.

    Article  CAS  Google Scholar 

  • Wang, X.S. and J.G. Han. 2007. Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci. Plant Nutr. 53:278–285.

    Article  CAS  Google Scholar 

  • Yeo, A.R., S.A. Flowers, G. Rao, K. Welfare, N. Senanayake, and T.J. Floweres. 1999. Silicon reduce sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ. 22:559–565.

    Article  CAS  Google Scholar 

  • Yin, L., S. Wang, J. Li, K. Tanaka, and M. Oka. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol. Plant. 35:3099–3107.

    Article  CAS  Google Scholar 

  • Zhu, Z., G. Wei, J. Li, Q. Qian, and J. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber Cucumis sativus L. Plant Sci. 167:527–533.

    Article  CAS  Google Scholar 

  • Zuccarini, P. 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol. Plant.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Ryong Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, A., Soundararajan, P., Arum, L.S. et al. Silicon-mediated enhancement of physiological and biochemical characteristics of Zinnia elegans ‘Dreamland Yellow’ grown under salinity stress. Hortic. Environ. Biotechnol. 56, 721–731 (2015). https://doi.org/10.1007/s13580-015-1081-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-1081-2

Additional key words

Navigation