Skip to main content

Advertisement

Log in

Establishment and characterization of NCC-SFT1-C1: a novel patient-derived cell line of solitary fibrous tumor

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Solitary fibrous tumors (SFTs) are rare mesenchymal tumors characterized by recurrent NAB2::STAT6 gene fusion, which are associated with an unpredictable clinical course, including the potential for recurrence or metastasis. Current therapeutic approaches for relapsed cases remain ineffective, and there is no established standard of care for SFTs. Although patient-derived cancer cell lines are fundamental research tools, only a few cell lines have been developed for SFTs. To address this, we established a novel SFT cell line, NCC-SFT1-C1, derived from surgically resected tumor tissues of a patient with SFT. The cell line retains the characteristic recurrent NAB2::STAT6 gene fusion in concordance with the matched original tumor. These cells exhibit moderate proliferation, invasion ability, and spheroid formation. We demonstrated that NCC-SFT1-C1 cells are useful for the high-throughput screening of the antiproliferative effects of 221 oncology drugs. Therefore, the NCC-SFT1-C1 cell line is a valuable tool for basic and preclinical studies on SFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Robinson DR, Wu YM, Kalyana-Sundaram S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013;45:180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chmielecki J, Crago AM, Rosenberg M, et al. Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors. Nat Genet. 2013;45:131–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohajeri A, Tayebwa J, Collin A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer. 2013;52:873–86.

    Article  CAS  PubMed  Google Scholar 

  4. Gengler C, Guillou L. Solitary fibrous tumour and haemangiopericytoma: evolution of a concept. Histopathology. 2006;48:63–74.

    Article  CAS  PubMed  Google Scholar 

  5. Park MS, Araujo DM. New insights into the hemangiopericytoma/solitary fibrous tumor spectrum of tumors. Curr Opin Oncol. 2009;21:327–31.

    Article  PubMed  Google Scholar 

  6. Salas S, Resseguier N, Blay JY, et al. Prediction of local and metastatic recurrence in solitary fibrous tumor: construction of a risk calculator in a multicenter cohort from the French Sarcoma Group (FSG) database. Ann Oncol. 2017;28:1979–87.

    Article  CAS  PubMed  Google Scholar 

  7. van Houdt WJ, Westerveld CM, Vrijenhoek JE, et al. Prognosis of solitary fibrous tumors: a multicenter study. Ann Surg Oncol. 2013;20:4090–5.

    Article  PubMed  Google Scholar 

  8. de Bernardi A, Dufresne A, Mishellany F, Blay JY, Ray-Coquard I, Brahmi M. Novel therapeutic options for solitary fibrous tumor: antiangiogenic therapy and beyond. Cancers. 2022;14:1064.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ben-David U, Beroukhim R, Golub TR. Genomic evolution of cancer models: perils and opportunities. Nat Rev Cancer. 2019;19:97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saito S, Morita K, Kohara A, et al. Use of BAC array CGH for evaluation of chromosomal stability of clinically used human mesenchymal stem cells and of cancer cell lines. Hum Cell. 2011;24:2–8.

    Article  PubMed  Google Scholar 

  11. Ben-David U, Siranosian B, Ha G, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560:325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang W, Soares J, Greninger P, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–61.

    Article  CAS  PubMed  Google Scholar 

  13. Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodspeed A, Heiser LM, Gray JW, Costello JC. Tumor-derived cell lines as molecular models of cancer pharmacogenomics. Mol Cancer Res. 2016;14:3–13.

    Article  CAS  PubMed  Google Scholar 

  15. Hattori E, Oyama R, Kondo T. Systematic review of the current status of human sarcoma cell lines. Cells. 2019;8:157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee JY, Guan P, Lim AH, et al. Establishment and characterization of a patient-derived solitary fibrous tumor/hemangiopericytoma cell line model. Hum Cell. 2024;37:310–22.

    Article  CAS  PubMed  Google Scholar 

  17. Ghanim B, Baier D, Pirker C, et al. Trabectedin is active against two novel, patient-derived solitary fibrous pleural tumor cell lines and synergizes with ponatinib. Cancers. 2022;14:5602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-ASPS1-C1: a novel patient-derived cell line of alveolar soft-part sarcoma. Hum Cell. 2020;33:1302.

    Article  CAS  PubMed  Google Scholar 

  19. Bairoch A. The cellosaurus, a cell-Line knowledge resource. J Biomol Tech. 2018;29:25–38.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Klemperer P, Rabin CB. Primary neoplasms of the pleura. A report of five cases. Arch Pathol. 1931;11:385–412.

    Google Scholar 

  21. Barthelmeß S, Geddert H, Boltze C, et al. Solitary fibrous tumors/hemangiopericytomas with different variants of the NAB2-STAT6 gene fusion are characterized by specific histomorphology and distinct clinicopathological features. Am J Pathol. 2014;184:1209–18.

    Article  PubMed  Google Scholar 

  22. Bieg M, Moskalev EA, Will R, et al. Gene expression in solitary fibrous tumors (SFTs) correlates with anatomic localization and NAB2-STAT6 gene fusion variants. Am J Pathol. 2021;191:602–17.

    Article  CAS  PubMed  Google Scholar 

  23. Ishihara S, Ogura K, Maejima A, et al. Predictive value of peripheral blood markers in soft tissue sarcoma patients treated with eribulin. Jpn J Clin Oncol. 2023;53:494–500.

    Article  PubMed  Google Scholar 

  24. Kawai A, Narahara H, Takahashi S, et al. Safety and effectiveness of eribulin in Japanese patients with soft tissue sarcoma including rare subtypes: a post-marketing observational study. BMC Cancer. 2022;22:528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawai A, Yonemori K, Takahashi S, Araki N, Ueda T. Systemic therapy for soft tissue sarcoma: proposals for the optimal use of pazopanib, trabectedin, and eribulin. Adv Ther. 2017;34:1556–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawai A, Araki N, Naito Y, et al. Phase 2 study of eribulin in patients with previously treated advanced or metastatic soft tissue sarcoma. Jpn J Clin Oncol. 2017;47:137–44.

    Article  PubMed  Google Scholar 

  27. Logan TF. Foretinib (XL880): c-MET inhibitor with activity in papillary renal cell cancer. Curr Oncol Rep. 2013;15:83–90.

    Article  CAS  PubMed  Google Scholar 

  28. Choueiri TK, Vaishampayan U, Rosenberg JE, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol. 2013;31:181–6.

    Article  CAS  PubMed  Google Scholar 

  29. Shah MA, Wainberg ZA, Catenacci DV, et al. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS ONE. 2013;8: e54014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Knubel KH, Pernu BM, Sufit A, Nelson S, Pierce AM, Keating AK. MerTK inhibition is a novel therapeutic approach for glioblastoma multiforme. Oncotarget. 2014;5:1338–51.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goździk-Spychalska J, Szyszka-Barth K, Spychalski L, et al. C-MET inhibitors in the treatment of lung cancer. Curr Treat Options Oncol. 2014;15:670–82.

    Article  PubMed  Google Scholar 

  32. Rayson D, Lupichuk S, Potvin K, et al. Canadian cancer trials group IND197: a phase II study of foretinib in patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2-negative recurrent or metastatic breast cancer. Breast Cancer Res Treat. 2016;157:109–16.

    Article  CAS  PubMed  Google Scholar 

  33. Yau TCC, Lencioni R, Sukeepaisarnjaroen W, et al. A phase I/II multicenter study of single-agent foretinib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2017;23:2405–13.

    Article  CAS  PubMed  Google Scholar 

  34. Seiwert T, Sarantopoulos J, Kallender H, McCallum S, Keer HN, Blumenschein G Jr. Phase II trial of single-agent foretinib (GSK1363089) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs. 2013;31:417–24.

    Article  CAS  PubMed  Google Scholar 

  35. Konstantinopoulos PA, Vandoros GP, Papavassiliou AG. FK228 (depsipeptide): a HDAC inhibitor with pleiotropic antitumor activities. Cancer Chemother Pharmacol. 2006;58:711–5.

    Article  CAS  PubMed  Google Scholar 

  36. Shimony S, Horowitz N, Ribakovsky E, et al. Romidepsin treatment for relapsed or refractory peripheral and cutaneous T-cell lymphoma: real-life data from a national multicenter observational study. Hematol Oncol. 2019;37:569–77.

    Article  CAS  PubMed  Google Scholar 

  37. De Luca A, Normanno N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. IDrugs : The Investigational Drugs Journal. 2010;13:636–45.

    PubMed  Google Scholar 

  38. Beckermann KE, Asnis-Alibozek AG, Atkins MB, et al. Long-term survival in patients with relapsed/refractory advanced renal cell carcinoma treated with tivozanib: analysis of the phase III TIVO-3 trial. Oncologist. 2024;29:254–62.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pratesi G, Casazza AM, Di Marco A. Antitumor activity of N-trifuloroacetyladriamycin-14-valerate. Cancer Treat Rep. 1978;62:105–10.

    CAS  PubMed  Google Scholar 

  40. Sharma P, Zargar-Shoshtari K, Sexton WJ. Valrubicin in refractory non-muscle invasive bladder cancer. Expert Rev Anticancer Ther. 2015;15:1379–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. S. Iwata, K. Ogura, and H. Kondo (Department of Musculoskeletal Oncology and Rehabilitation Medicine, the National Cancer Center Hospital) for sampling tumor tissue specimens from surgically resected materials. We also appreciate the technical assistance provided by Mrs. Y. Shiotani (Central Animal Division, National Cancer Center Research Institute). We would also like to thank Editage (www.editage.jp) for their help with English language editing and their constructive comments on the manuscript. This research was technically assisted by the Fundamental Innovative Oncology Core at the National Cancer Center.

Funding

This research was supported by the Japan Agency for Medical Research and Development (grant number: 20ck0106537h).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Kondo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was conducted in accordance with the principles of the Declaration of Helsinki. This study was approved by the Ethics Committee of the National Cancer Center (approval number 2004–050).

Informed consent

Written informed consent for publication was provided by the patient.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwata, S., Noguchi, R., Oosaki, J. et al. Establishment and characterization of NCC-SFT1-C1: a novel patient-derived cell line of solitary fibrous tumor. Human Cell 38, 49 (2025). https://doi.org/10.1007/s13577-025-01175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13577-025-01175-1

Keywords