Skip to main content
Log in

LncRNA NUTM2A-AS1 aggravates the progression of hepatocellular carcinoma by activating the miR-186-5p/KLF7-mediated Wnt/beta-catenin pathway

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Emerging evidence has uncovered that noncoding RNAs (ncRNAs) contribute to the development of hepatocellular carcinoma (HCC). Nevertheless, the functions of the majority of long ncRNAs (lncRNAs) in HCC are unknown. Here, we intend to probe the function of lncRNA NUTM2A-AS1 in the evolvement of HCC and the related mechanism. Expression levels of lncRNA NUTM2A-AS1, miR-186-5p and KLF7 mRNA in HCC tissues and adjacent non-tumor tissues were monitored. Gain- or loss-of-function assays were utilized to investigate the biological functions of lncRNA NUTM2A-AS1, miR-186-5p and KLF7 in HCC cell lines (including HCCLM3 and Huh7). Western blot was implemented for the detection of the epithelial–mesenchymal transition (EMT)-related proteins (including E-cadherin, Vimentin and Snail), KLF7, Wnt, β-catenin, and stemness-related proteins (Nanog, OCT4, YKL40, and CD133). Furthermore, the targeted associations between lncRNA NUTM2A-AS1, miR-186-5p, and KLF7 were verified by bioinformatics analysis, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. As a result, lncRNA NUTM2A-AS1 and KLF7 profiles were heightened in the HCC tissues versus adjacent normal tissues, while miR-186-5p had the opposite expression tendency. Up-regulation of lncRNA NUTM2A-AS1 was related to tumor size, advanced tumor stage, and lymph node metastasis of HCC patients. Functionally, overexpression of lncRNA NUTM2A-AS1 heightened HCC cells’ growth, invasion, EMT, and stemness and repressed their apoptosis by activating the Wnt/β-catenin pathway. In contrast, up-regulation of miR-186-5p or inhibition of KLF7 had reverse effects. In vivo, lncRNA NUTM2A-AS1 overexpression facilitated tumor growth and EMT, accompanied by declined miR-186-5p levels and enhanced KLF7 expression. The mechanistic studies revealed that miR-186-5p served as a common target of lncRNA NUTM2A-AS1 and KLF7. As hinted by the rescue experiments, NUTM2A-AS1 partly abated miR-186-5p-mediated anti-tumor effects in HCC cells, whereas KLF7 knockdown reversed the promotive effects of NUTM2A-AS1. LncRNA NUTM2A-AS1 accelerated the evolution of HCC by up-regulating the KLF7/Wnt/beta-catenin pathway through sponging miR-186-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, Kamel IR, Ghasebeh MA, Pawlik TM. Hepatocellular carcinoma: From diagnosis to treatment. Surg Oncol. 2016;25(2):74–85.

    Article  Google Scholar 

  2. Li S, Yang F, Ren X. Immunotherapy for hepatocellular carcinoma. Drug Discov Ther. 2015;9(5):363–71.

    Article  CAS  Google Scholar 

  3. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55.

    Article  Google Scholar 

  4. Xu JM. Current treatment in advanced hepatocellular carcinoma and prospects for immuno-oncology therapy. Zhonghua Zhong Liu Za Zhi. 2017;39(8):561–5.

    CAS  Google Scholar 

  5. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208.

    Article  CAS  Google Scholar 

  6. Acha-Sagredo A, Uko B, Pantazi P, Bediaga NG, Moschandrea C, Rainbow L, Marcus MW, Davies MPA, Field JK, Liloglou T. Long noncoding RNA dysregulation is a frequent event in non-small cell lung carcinoma pathogenesis. Br J Cancer. 2020;122(7):1050–8.

    Article  CAS  Google Scholar 

  7. Wang J, Yu Z, Wang J, Shen Y, Qiu J, Zhuang Z. lncRNA NUTM2A-AS1 positively modulates TET1 and HIF-1A to enhance gastric cancer tumorigenesis and drug resistance by sponging miR-376a. Cancer Med. 2020;9(24):9499–510.

    Article  CAS  Google Scholar 

  8. Xu X, Wang Y, Mojumdar K, Zhou Z, Jeong KJ, Mangala LS, et al. A-to-I-edited miRNA-379-5p inhibits cancer cell proliferation through CD97-induced apoptosis. J Clin Invest. 2019;129(12):5343–56.

    Article  CAS  Google Scholar 

  9. Feng H, Zhang Z, Qing X, French SW, Liu D. miR-186-5p promotes cell growth, migration and invasion of lung adenocarcinoma by targeting PTEN. Exp Mol Pathol. 2019;108:105–13.

    Article  CAS  Google Scholar 

  10. Zhang Z, Zhang W, Mao J, Xu Z, Fan M. miR-186-5p functions as a tumor suppressor in human osteosarcoma by targeting FOXK1. Cell Physiol Biochem. 2019;52(3):553–64.

    Article  CAS  Google Scholar 

  11. Islam F, Qiao B, Smith RA, Gopalan V, Lam AK. Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol. 2015;98(2):184–91.

    Article  CAS  Google Scholar 

  12. Yu Y, Cai O, Wu P, Tan S. MiR-490-5p inhibits the stemness of hepatocellular carcinoma cells by targeting ECT2. J Cell Biochem. 2019;120(1):967–76.

    Article  CAS  Google Scholar 

  13. Gupta R, Malvi P, Parajuli KR, Janostiak R, Bugide S, Cai G, Zhu LJ, Green MR, Wajapeyee N. KLF7 promotes pancreatic cancer growth and metastasis by up-regulating ISG expression and maintaining Golgi complex integrity. Proc Natl Acad Sci USA. 2020;117(22):12341–51.

    Article  CAS  Google Scholar 

  14. Yao J, Zhang H, Liu C, Chen S, Qian R, Zhao K. miR-450b-3p inhibited the proliferation of gastric cancer via regulating KLF7. Cancer Cell Int. 2020;20:47.

    Article  Google Scholar 

  15. Zhao L, Zhang Y, Liu J, Yin W, Jin D, Wang D, Zhang W. miR-185 inhibits the proliferation and invasion of non-small cell lung cancer by targeting KLF7. Oncol Res. 2019;27(9):1015–23.

    Article  Google Scholar 

  16. Wang W, Smits R, Hao H, He C. Wnt/β-catenin signaling in liver cancers. Cancers (Basel). 2019;11(7):926.

    Article  Google Scholar 

  17. Huang A, Jin S, Han W, Wang Y, Ma S, Wang Z, Lin K, Zou Q, Zhou J, Li Z, Chen L. Long noncoding RNA KCNQ1OT1 contributes to tumor growth and activates Wnt/β-catenin signaling in osteosarcoma by targeting the miR-3666/KLF7 axis. Int J Mol Med. 2020;47(1):387–96.

    Article  Google Scholar 

  18. Wallace MC, Preen D, Jeffrey GP, Adams LA. The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev Gastroenterol Hepatol. 2015;9(6):765–79.

    Article  CAS  Google Scholar 

  19. Lim LJ, Wong SYS, Huang F, Lim S, Chong SS, Ooi LL, Kon OL, Lee CG. Roles and regulation of long noncoding RNAs in hepatocellular carcinoma. Cancer Res. 2019;79(20):5131–9.

    Article  CAS  Google Scholar 

  20. Huang X, Gao Y, Qin J, Lu S. lncRNA MIAT promotes proliferation and invasion of HCC cells via sponging miR-214. Am J Physiol Gastrointest Liver Physiol. 2018;314(5):G559–65.

    Article  CAS  Google Scholar 

  21. Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, Zheng Z, Li H, Teng L. lncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging (Albany NY). 2018;10(11):3371–81.

    Article  CAS  Google Scholar 

  22. Zhang J, Lou W. A key mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network linked to diagnosis and prognosis of hepatocellular carcinoma. Front Oncol. 2020;10:340.

    Article  Google Scholar 

  23. Sun J, Lu H, Wang X, Jin H. MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. Sci World J. 2013;2013: 924206.

    Article  Google Scholar 

  24. Wang Y, Tai Q, Zhang J, Kang J, Gao F, Zhong F, Cai L, Fang F, Gao Y. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression. Acta Biochim Biophys Sin (Shanghai). 2019;51(3):243–53.

    Article  Google Scholar 

  25. Shi J, Li X, Hu Y, Zhang F, Lv X, Zhang X, Chen Q, Hu S. MiR-1203 is involved in hepatocellular carcinoma metastases and indicates a poor prognosis. Neoplasma. 2020;67(2):267–76.

    Article  CAS  Google Scholar 

  26. Wu SM, Ai HW, Zhang DY, Han XQ, Pan Q, Luo FL, Zhang XL. MiR-141 targets ZEB2 to suppress HCC progression. Tumour Biol. 2014;35(10):9993–7.

    Article  CAS  Google Scholar 

  27. Song Y, Wang G, Zhuang J, Ni J, Zhang S, Ye Y, Xia W. MicroRNA-584 prohibits hepatocellular carcinoma cell proliferation and invasion by directly targeting BDNF. Mol Med Rep. 2019;20(2):1994–2001.

    CAS  Google Scholar 

  28. Guo L, Li B, Miao M, Yang J, Ji J. MicroRNA-663b targets GAB2 to restrict cell proliferation and invasion in hepatocellular carcinoma. Mol Med Rep. 2019;19(4):2913–20.

    CAS  Google Scholar 

  29. Zhu K, Su Y, Xu B, Wang Z, Sun H, Wang L, Sun C, He X. MicroRNA-186-5p represses neuroblastoma cell growth via down-regulation of Eg5. Am J Transl Res. 2019;11(4):2245–56.

    CAS  Google Scholar 

  30. Islam F, Gopalan V, Vider J, Wahab R, Ebrahimi F, Lu CT, Kasem K, Lam AKY. MicroRNA-186-5p overexpression modulates colon cancer growth by repressing the expression of the FAM134B tumour inhibitor. Exp Cell Res. 2017;357(2):260–70.

    Article  CAS  Google Scholar 

  31. Jones DZ, Schmidt ML, Suman S, Hobbing KR, Barve SS, Gobejishvili L, Brock G, Klinge CM, Rai SN, Park J, Clark GJ, Agarwal R, Kidd LR. Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells. BMC Cancer. 2018;18(1):421.

    Article  Google Scholar 

  32. Shan Y, Li P. Long intergenic non-protein coding RNA 665 regulates viability, apoptosis, and autophagy via the MiR-186-5p/MAP4K3 axis in hepatocellular carcinoma. Yonsei Med J. 2019;60(9):842–53.

    Article  CAS  Google Scholar 

  33. Kaczynski J, Cook T, Urrutia R. Sp1- and Kruppel-like transcription factors. Genome Biol. 2003;4(2):206.

    Article  Google Scholar 

  34. Li Y, Tu S, Zeng Y, Zhang C, Deng T, Luo W, Lian L, Chen L, Xiong X, Yan X. KLF2 inhibits TGF-β-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai). 2020;52(5):485–94.

    Article  CAS  Google Scholar 

  35. Xue M, Zhou C, Zheng Y, Zhang Z, Wang S, Fu Y, Atyah M, Xue X, Zhu L, Dong Q, Jia H, Ren N, Hu R. The association between KLF4 as a tumor suppressor and the prognosis of hepatocellular carcinoma after curative resection. Aging (Albany NY). 2020;12(15):15566–80.

    Article  CAS  Google Scholar 

  36. Cai M, Shao W, Yu H, Hong Y, Shi L. Paeonol inhibits cell proliferation, migration and invasion and induces apoptosis in hepatocellular carcinoma by regulating miR-21-5p/KLF6 axis. Cancer Manag Res. 2020;12:5931–43.

    Article  CAS  Google Scholar 

  37. Lyu J, Wang J, Miao Y, Xu T, Zhao W, Bao T, Zhu H. KLF7 is associated with poor prognosis and regulates migration and adhesion in tongue cancer. Oral Dis. 2021. https://doi.org/10.1111/odi.13767.

    Article  Google Scholar 

  38. Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.

    Article  CAS  Google Scholar 

  39. Vilchez V, Turcios L, Marti F, Gedaly R. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol. 2016;22(2):823–32.

    Article  CAS  Google Scholar 

  40. He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother. 2020;132:110851.

    Article  CAS  Google Scholar 

  41. Evans PM, Chen X, Zhang W, Liu C. KLF4 interacts with beta-catenin/TCF4 and blocks p300/CBP recruitment by beta-catenin. Mol Cell Biol. 2010;30(2):372–81.

    Article  CAS  Google Scholar 

  42. Liang X, Xu W. miR-181a-5p regulates the proliferation and apoptosis of glomerular mesangial cells by targeting KLF6. Exp Ther Med. 2020;20(2):1121–8.

    Article  CAS  Google Scholar 

  43. Li K, Yuan C. MicroRNA-103 modulates tumor progression by targeting KLF7 in non-small cell lung cancer. Int J Mol Med. 2020;46(3):1013–28.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by The Natural Science Foundation of Hunan Province (2022JJ30545), Key special funds project of Hunan Science and Technology Department (2020SKC2009), The Scientific Research Project of Hunan Provincial Health and Family Planning Commission (20201954, A2017012, A2017015) and The Special Funding for the Construction of Innovative Provinces in Hunan (2021SK4031).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: LQ. Performed the experiments: JL; FL; YY. Statistical analysis: FL; XZ; XL. Wrote the paper: JL; all the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xianzhou Lu or Lei Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study has been approved by The Affiliated Nanhua Hospital of University of South China. All animal procedures were performed according to the instructions of the ethics committee of The Affiliated Nanhua Hospital of University of South China.

Consent for publication

All the patients involved agreed to participate in this study and signed informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J., Liu, L., Yang, X. et al. LncRNA NUTM2A-AS1 aggravates the progression of hepatocellular carcinoma by activating the miR-186-5p/KLF7-mediated Wnt/beta-catenin pathway. Human Cell 36, 312–328 (2023). https://doi.org/10.1007/s13577-022-00802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00802-5

Keywords

Navigation