Skip to main content

Advertisement

Log in

SNHG16 regulates invasion and migration of bladder cancer through induction of epithelial-to-mesenchymal transition

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Bladder cancer (BCa) is one of the most common urinary malignancies in the world. Growing evidence suggests that epithelial-to-mesenchymal transition (EMT) is a major contributor for BCa metastasis. lncRNA small nucleolar RNA host gene 16 (SNHG16) has been reported as a tumor promoter in many cancers. This study aims to investigate the function and mechanism of SNHG16 on EMT in BCa. Quantitative RT-PCR (qRT-PCR) was used to determine the expression of SNHG16 in human BCa tissues and TGF-β-induced cells. Western blot (WB) was performed to evaluate the expression of EMT-related proteins. Transwell assay was exerted to assess the migration and invasion ability of SNHG16 in BCa. RNA pull-down assay was conducted to confirm the RNA–RNA interaction. The precise mechanism by which SNHG16 regulated EMT process in BCa was also explored. SNHG16 was found up-regulated in TGF-β-induced BCa cells and BCa tissues. Transwell assay showed that overexpression of SNHG16 significantly promoted the migration and invasion of BCa cells, whereas knock-down of SNHG16 caused the opposite effects. Then, the interaction between SNHG16 and miR-200a-3p was verified by dual-luciferase reporter assay and RNA pull-down assay. And the effects of knock-down or overexpression of SNHG16 on migration and invasion were reversed by co-transfecting miR-200a-3p inhibitors or mimics. This study first demonstrated that SNHG16 was responsible for EMT of BCa cells via miR-200a-3p/ ZEB1/ZEB2 axis. These results provided a potential therapeutic strategy for BCa treatment, especially in metastatic BCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar R. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315.

    Google Scholar 

  2. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray FJ. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71(1):96–108.

    PubMed  Google Scholar 

  3. Kardos J, Chai S, Mose LE, Selitsky SR, Krishnan B, Saito R, et al. Claudin-low bladder tumors are immune infiltrated and actively immune suppressed. JCI Insight. 2016;1(3):e85902.

    PubMed  PubMed Central  Google Scholar 

  4. Witjes J, Compérat E, Cowan N, De Santis M, Gakis G, Lebret T, et al. Muscle-invasive and metastatic bladder cancer. Eur Urol Guidel. 2015;71(3):462–75.

    Google Scholar 

  5. Pinto I. Systemic therapy in bladder cancer. 2017;33(2):118–26.

    Google Scholar 

  6. Chang SS, Bochner BH, Chou R, Dreicer R, Kamat AM, Lerner SP, et al. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO guideline. J Urol. 2017;198(3):552–9.

    PubMed  PubMed Central  Google Scholar 

  7. Milowsky MI, Rumble RB, Booth CM, Gilligan T, Eapen LJ, Hauke RJ, et al. Guideline on muscle-invasive and metastatic bladder cancer. Eur Urol. 2016;34(16):1945–52.

    Google Scholar 

  8. Revenco T, Nicodème A, Pastushenko I, Sznurkowska MK, Latil M, Sotiropoulou PA, et al. Context dependency of epithelial-to-mesenchymal transition for metastasis. Cell Rep. 2019;29(6):1458–68.

    CAS  PubMed  Google Scholar 

  9. Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, et al. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol. 2015;5:155.

    PubMed  PubMed Central  Google Scholar 

  10. McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28(3–4):335–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Islam S, Mokhtari R, Noman A, Uddin M, Rahman M, Azadi M, et al. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinog. 2016;55(5):537–51.

    CAS  PubMed  Google Scholar 

  12. Jeppesen DK, Nawrocki A, Jensen SG, Thorsen K, Whitehead B, Howard KA, et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics. 2014;14(6):699–712.

    CAS  PubMed  Google Scholar 

  13. Li A, Zhu X, Wang C, Yang S, Qiao Y, Qiao R, et al. Upregulation of NDRG1 predicts poor outcome and facilitates disease progression by influencing the EMT process in bladder cancer. Sci Rep. 2019;9:1–2.

    Google Scholar 

  14. Guo CC, Majewski T, Zhang L, Yao H, Bondaruk J, Wang Y, et al. Dysregulation of EMT drives the progression to clinically aggressive sarcomatoid bladder cancer. Cell Rep. 2019;27(6):1781–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Meseure D, Drak Alsibai K, Nicolas A, Bieche I, Morillon AJ. Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. Biomed Res Int. 2015;2015:320214.

    PubMed  PubMed Central  Google Scholar 

  16. Yang JX, Rastetter RH, Wilhelm D. Non-coding RNAs: an introduction non-coding RNA and the reproductive system. Berlin: Springer; 2016. p. 13–32.

    Google Scholar 

  17. Ernst C, Morton CC. Identification and function of long non-coding RNA. Front Cell Neurosci. 2013;7:168.

    PubMed  PubMed Central  Google Scholar 

  18. Kondo Y, Shinjo K, Katsushima KJC. Long non-coding RNA s as an epigenetic regulator in human cancers. Cancer Sci. 2017;108(10):1927–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rui X, Wang L, Pan H, Gu T, Shao S, Leng J, et al. Lnc RNA GAS 6-AS 2 promotes bladder cancer proliferation and metastasis via GAS 6-AS 2/miR-298/CDK 9 axis. J Cell Mol Med. 2019;23(2):865–76.

    CAS  PubMed  Google Scholar 

  20. Xue M, Pang H, Li X, Li H, Pan J, Chen W. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145–ZEB 1/2–FSCN 1 pathway. Cancer Sci. 2016;107(1):18–27.

    PubMed  Google Scholar 

  21. Cai C, Huo Q, Wang X, Chen B, Yang Q. SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5. Biochem Biophys Res Commun. 2017;485(2):272–8.

    CAS  PubMed  Google Scholar 

  22. Christensen LL, True K, Hamilton MP, Nielsen MM, Damas ND, Damgaard CK, et al. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol. 2016;10(8):1266–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang Y, Chen X, Wu Y, Li J, Zhang S, Wang K, et al. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ. 2018;25(11):1980.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ni W, Zhang Y, Zhan Z, Ye F, Liang Y, Huang J, et al. A novel lncRNA uc. 134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. J Hematol Oncol. 2017;10(1):91.

    PubMed  PubMed Central  Google Scholar 

  25. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström P-U, Choi W, et al. Bladder cancer. Lancet. 2016;388(10061):2796–810.

    PubMed  Google Scholar 

  26. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128.

    CAS  PubMed  Google Scholar 

  27. Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene. 2012;31(16):2062.

    CAS  PubMed  Google Scholar 

  28. Cong N, Du P, Zhang A, Shen F, Su J, Pu P, et al. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol Rep. 2013;29(4):1579–87.

    CAS  PubMed  Google Scholar 

  29. Lee J-Y, Park M, Park J, Lee H, Shin D, Kang Y, et al. Loss of the polycomb protein Mel-18 enhances the epithelial–mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer. Oncogene. 2014;33(10):1325.

    CAS  PubMed  Google Scholar 

  30. Galván JA, Zlobec I, Wartenberg M, Lugli A, Gloor B, Perren A, et al. Expression of E-cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells influences tumour-budding phenotype and suggests heterogeneity of stromal cells in pancreatic cancer. Br J Cancer. 2015;112(12):1944.

    PubMed  PubMed Central  Google Scholar 

  31. Hanrahan K, O'Neill A, Prencipe M, Bugler J, Murphy L, Fabre A, et al. The role of epithelial–mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol Cancer. 2017;11(3):251–65.

    CAS  Google Scholar 

  32. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou X, Men X, Zhao R, Han J, Fan Z, Wang Y, et al. miR-200c inhibits TGF-β-induced-EMT to restore trastuzumab sensitivity by targeting ZEB1 and ZEB2 in gastric cancer. Cancer Gene Ther. 2018;25(3):68.

    CAS  PubMed  Google Scholar 

  34. Zhang Y, Chen W, Pan T, Wang H, Zhang Y, Li CJB, et al. LBX2-AS1 is activated by ZEB1 and promotes the development of esophageal squamous cell carcinoma by interacting with HNRNPC to enhance the stability of ZEB1 and ZEB2 mRNAs. Biochem Biophys Res Commun. 2019;511(3):566–72.

    CAS  PubMed  Google Scholar 

  35. Zhao L, Li X, Song N, Li A, Hou K, Qu X, et al. Src promotes EGF-induced epithelial-to-mesenchymal transition and migration in gastric cancer cells by upregulating ZEB1 and ZEB2 through AKT. Cell Biol Int. 2018;42(3):294–302.

    CAS  PubMed  Google Scholar 

  36. Lin C, Yang LJ. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2018;28(4):287–301.

    CAS  PubMed  Google Scholar 

  37. Duan W, Du L, Jiang X, Wang R, Yan S, Xie Y, et al. Identification of a serum circulating lncRNA panel for the diagnosis and recurrence prediction of bladder cancer. Oncotarget. 2016;7(48):78850.

    PubMed  PubMed Central  Google Scholar 

  38. Zhu Z, Xu L, Wan Y, Zhou J, Fu D, Chao H, et al. Inhibition of E-cadherin expression by lnc-RNA H19 to facilitate bladder cancer metastasis. Cancer Biomark. 2018;22(2):275–81.

    CAS  PubMed  Google Scholar 

  39. Chen X, Xie R, Gu P, Huang M, Han J, Dong W, et al. Long noncoding RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res. 2019;25(4):1389–403.

    PubMed  Google Scholar 

  40. Yang X, Wang G, Luo L. Long non-coding RNA SNHG16 promotes cell growth and metastasis in ovarian cancer. Eur Rev Med Pharmacol Sci. 2018;22(3):616–22.

    PubMed  Google Scholar 

  41. Han W, Du X, Liu M, Wang J, Sun L, Li Y. Increased expression of long non-coding RNA SNHG16 correlates with tumor progression and poor prognosis in non-small cell lung cancer. Int J Biol Macromol. 2019;121:270–8.

    CAS  PubMed  Google Scholar 

  42. Gong Y, Mao J, Wu D, Wang X, Li L, Zhu L, et al. Circ-ZEB.1 33 promotes the proliferation of human HCC by sponging miR-200a-3p and upregulating CDK6. Cancer Cell Int. 2018;18(1):116.

    PubMed  PubMed Central  Google Scholar 

  43. Wang X, Jiang F, Song H, Li X, Xian J, Gu X, et al. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma. Biochem Biophys Res Commun. 2016;470(3):620–6.

    CAS  PubMed  Google Scholar 

  44. Jia C, Zhang Y, Xie Y, Ren Y, Zhang H, Zhou Y, et al. miR-200a-3p plays tumor suppressor roles in gastric cancer cells by targeting KLF12. Artif Cells Nanomed Biotechnol. 2019;47(1):3697–703.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

Funding information is not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests, and all authors should confirm its accuracy.

Ethics approval

The Ethics Committee of The First Affiliated Hospital of Fujian Medical University approved this study and informed consents were obtained from every patient before operation. (No. FM-1809846).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Jiang, T., Mao, H. et al. SNHG16 regulates invasion and migration of bladder cancer through induction of epithelial-to-mesenchymal transition. Human Cell 33, 737–749 (2020). https://doi.org/10.1007/s13577-020-00343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00343-9

Keywords

Navigation