Skip to main content

Advertisement

Log in

MiR-1179 inhibits the proliferation of gastric cancer cells by targeting HMGB1

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Gastric cancer is one of the most common aggressive malignancies with high incidence and mortality. Increasing evidence has suggested that microRNAs (miRNAs) are involved in the initiation and development of gastric cancer. Here, we found that miR-1179 was significantly down-regulated in both gastric cancer tissues and cell lines. Decreased expression of miR-1179 was remarkably correlated with the increased tumor size, higher tumor stage and lymph node metastasis of gastric cancer patients. Overexpression of miR-1179 significantly inhibited the proliferation and invasion of gastric cancer cells. Further molecular experiments showed that miR-1179 bound the 3′-untranslated region of the high mobility group box 1 (HMGB1) and decreased the expression of HMGB1 in gastric cancer cells. The level of HMGB1 was negatively correlated with the expression of miR-1179 in gastric cancer tissues. Rescue experiment demonstrated that restore the expression of HMGB1 significantly inversed the inhibitory effect of miR-1179 on the proliferation of gastric cancer cells. Our results uncovered the novel function of miR-1179/HMGB1 axis in the progression of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng Y, Zhu XQ, Ren XG. Third-line chemotherapy in advanced gastric cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96(24):e6884. https://doi.org/10.1097/MD.0000000000006884.

    Article  Google Scholar 

  2. Coburn N, Cosby R, Klein L, Knight G, Malthaner R, Mamazza J, et al. Staging and surgical approaches in gastric cancer: a systematic review. Cancer Treat Rev. 2018;63:104–15. https://doi.org/10.1016/j.ctrv.2017.12.006.

    Article  PubMed  Google Scholar 

  3. Shimizu D, Kanda M, Kodera Y. Review of recent molecular landscape knowledge of gastric cancer. Histol Histopathol. 2018;33(1):11–26. https://doi.org/10.14670/HH-11-898.

    Article  CAS  PubMed  Google Scholar 

  4. Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, et al. Treatment of gastric cancer. World J Gastroenterol. 2014;20(7):1635–49. https://doi.org/10.3748/wjg.v20.i7.1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol. 2017;39(7):1010428317714626. https://doi.org/10.1177/1010428317714626.

    Article  PubMed  Google Scholar 

  6. Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis. 2015;35(1):3–11. https://doi.org/10.1055/s-0034-1397344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79. https://doi.org/10.1146/annurev-biochem-060308-103103.

    Article  CAS  PubMed  Google Scholar 

  8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  9. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. https://doi.org/10.1038/nature02871.

    Article  CAS  PubMed  Google Scholar 

  10. Xie M, Ma L, Xu T, Pan Y, Wang Q, Wei Y, et al. Potential regulatory roles of microRNAs and long noncoding RNAs in anticancer therapies. Mol Ther Nucleic Acids. 2018;13:233–43. https://doi.org/10.1016/j.omtn.2018.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwak PB, Iwasaki S, Tomari Y. The microRNA pathway and cancer. Cancer Sci. 2010;101(11):2309–15. https://doi.org/10.1111/j.1349-7006.2010.01683.x.

    Article  CAS  PubMed  Google Scholar 

  12. Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223(2):102–15. https://doi.org/10.1002/path.2806.

    Article  CAS  PubMed  Google Scholar 

  13. Qu H, Xu W, Huang Y, Yang S. Circulating miRNAs: promising biomarkers of human cancer. Asian Pac J Cancer Prev APJCP. 2011;12(5):1117–25.

    PubMed  Google Scholar 

  14. Gentilin E, Degli Uberti E, Zatelli MC. Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab. 2016;30(5):629–39. https://doi.org/10.1016/j.beem.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  15. Yu H, Zhang J, Wen Q, Dai Y, Zhang W, Li F, et al. MicroRNA-6852 suppresses cell proliferation and invasion via targeting forkhead box J1 in gastric cancer. Exp Ther Med. 2018;16(4):3249–55. https://doi.org/10.3892/etm.2018.6569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu J, Wang F, Wang X, He Z, Zhu X. miRNA-543 promotes cell migration and invasion by targeting SPOP in gastric cancer. Onco Targets Ther. 2018;11:5075–82. https://doi.org/10.2147/OTT.S161316.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Park SK, Park YS, Ahn JY, Do EJ, Kim D, Kim JE, et al. MiR 21-5p as a predictor of recurrence in young gastric cancer patients. J Gastroenterol Hepatol. 2016;31(8):1429–35. https://doi.org/10.1111/jgh.13300.

    Article  CAS  PubMed  Google Scholar 

  18. Kao HW, Pan CY, Lai CH, Wu CW, Fang WL, Huang KH, et al. Urine miR-21-5p as a potential non-invasive biomarker for gastric cancer. Oncotarget. 2017;8(34):56389–97. https://doi.org/10.18632/oncotarget.16916.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li Q, Li B, Li Q, Wei S, He Z, Huang X, et al. Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis. 2018;9(9):854. https://doi.org/10.1038/s41419-018-0928-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song L, Dai Z, Zhang S, Zhang H, Liu C, Ma X, et al. MicroRNA-1179 suppresses cell growth and invasion by targeting sperm-associated antigen 5-mediated Akt signaling in human non-small cell lung cancer. Biochem Biophys Res Commun. 2018;504(1):164–70. https://doi.org/10.1016/j.bbrc.2018.08.149.

    Article  CAS  PubMed  Google Scholar 

  21. Lin C, Hu Z, Yuan G, Su H, Zeng Y, Guo Z, et al. MicroRNA-1179 inhibits the proliferation, migration and invasion of human pancreatic cancer cells by targeting E2F5. Chemico-Biol Interact. 2018;291:65–71. https://doi.org/10.1016/j.cbi.2018.05.017.

    Article  CAS  Google Scholar 

  22. Xu X, Cai N, Zhi T, Bao Z, Wang D, Liu Y, et al. MicroRNA-1179 inhibits glioblastoma cell proliferation and cell cycle progression via directly targeting E2F transcription factor 5. Am J Cancer Res. 2017;7(8):1680–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumari T, Kumar B. High-mobility group box 1 protein (HMGB1) gene polymorphisms and cancer susceptibility: a comprehensive meta-analysis. Clin Chim Acta. 2018;483:170–82. https://doi.org/10.1016/j.cca.2018.04.042.

    Article  CAS  PubMed  Google Scholar 

  24. Huang CY, Chiang SF, Ke TW, Chen TW, Lan YC, You YS, et al. Cytosolic high-mobility group box protein 1 (HMGB1) and/or PD-1 + TILs in the tumor microenvironment may be contributing prognostic biomarkers for patients with locally advanced rectal cancer who have undergone neoadjuvant chemoradiotherapy. Cancer Immunol Immunother. 2018;67(4):551–62. https://doi.org/10.1007/s00262-017-2109-5.

    Article  CAS  PubMed  Google Scholar 

  25. Xu Y, Chen Z, Zhang G, Xi Y, Sun R, Chai F, et al. HMGB1 overexpression correlates with poor prognosis in early-stage squamous cervical cancer. Tumour Biol. 2015;36(11):9039–47. https://doi.org/10.1007/s13277-015-3624-7.

    Article  CAS  PubMed  Google Scholar 

  26. Wu T, Zhang W, Yang G, Li H, Chen Q, Song R, et al. HMGB1 overexpression as a prognostic factor for survival in cancer: a meta-analysis and systematic review. Oncotarget. 2016;7(31):50417–27. https://doi.org/10.18632/oncotarget.10413.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen J, Li G. MiR-1284 enhances sensitivity of cervical cancer cells to cisplatin via downregulating HMGB1. Biomed Pharmacother. 2018;107:997–1003. https://doi.org/10.1016/j.biopha.2018.08.059.

    Article  CAS  PubMed  Google Scholar 

  28. Lu L, Zhang D, Xu Y, Bai G, Lv Y, Liang J. miR-505 enhances doxorubicin-induced cytotoxicity in hepatocellular carcinoma through repressing the Akt pathway by directly targeting HMGB1. Biomed Pharmacother. 2018;104:613–21. https://doi.org/10.1016/j.biopha.2018.05.087.

    Article  CAS  PubMed  Google Scholar 

  29. Tian L, Wang ZY, Hao J, Zhang XY. miR-505 acts as a tumor suppressor in gastric cancer progression through targeting HMGB1. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.28082.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu D, Liu J, Chen J, He H, Ma H, Lv X. MiR-449a suppresses tumor growth, migration and invasion in non-small cell lung cancer by targeting HMGB1-mediated NF-kappaB signaling way. Oncol Res. 2018. https://doi.org/10.3727/096504018X15213089759999.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Feng XJ, Liu SX, Wu C, Kang PP, Liu QJ, Hao J, et al. The PTEN/PI3K/Akt signaling pathway mediates HMGB1-induced cell proliferation by regulating the NF-kappaB/cyclin D1 pathway in mouse mesangial cells. Am J Physiol Cell Physiol. 2014;306(12):C1119-28. https://doi.org/10.1152/ajpcell.00385.2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13577_2019_244_MOESM1_ESM.tif

Supplementary material 1 Supplementary Figure 1 Overexpression of miR-1179 decreased the expression of HMGB1 and inhibited the growth of MGC-803 and MKN-45 cells. a, b Overexpression of miR-1179 suppressed the proliferation of both MGC-803 and MKN-45 cells. c, d Transfection of miR-1179 inhibited the mRNA and protein expression of HMGB1 in MGC-803 and MKN-45 cells (TIF 1563 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qin, C. MiR-1179 inhibits the proliferation of gastric cancer cells by targeting HMGB1. Human Cell 32, 352–359 (2019). https://doi.org/10.1007/s13577-019-00244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00244-6

Keywords

Navigation