Skip to main content
Log in

Physical map of lncRNAs and lincRNAs linked with stress responsive miRs and genes network of pigeonpea (Cajanus cajan L.)

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pigeonpea (Cajanus cajan L.) is one of economically significant comestible legume crop possessing huge agricultural as well as therapeutic value. Though many reports have been published in identification of lncRNAs from recognized plant models viz., arabidopsis, maize and rice, less has been studied about lncRNAs of legume crops of Fabaceae family. Pigeonpea comprehensive transcriptome assembly data available at Legume Information System was used in this investigation. Chromosome physical maps were drawn by using locations of lncRNAs and lincRNAs in C. cajan (L.) chromosomes. The GO enrichment was extracted for all the neighbouring protein coding genes and more abundant terms were computed for each category of molecular function, biological process and cellular components by Blast2go. The targets and target mimics were predicted using psRNATarget pooled with native scripts in accordance with rules. Sixty-three novel lincRNAs were identified from pigeonpea transcriptome assembly. Stringent in-silico analyses were done to identify novel lincRNAs. Gene ontology and enrichment analysis of identified transcripts were carried out to functionally characterize lincRNAs. The result showed that 43 lincRNAs could perfectly be mapped on pigeonpea genome. We report 50 lncRNA targeting cca-miRs and 36 cca-miRs processed from lncRNAs as pre-miRs. LncRNAs act as eTM for functional mRNAs. Target networks and similar lincRNAs and targets clusters of related species are also elucidated. The results presented here will facilitate future studies to unravel the function of lincRNAs in pigeonpea proposing that the genome-wide computational analysis is a reliable method for identifying new lincRNAs and accelerating the development of biotic and abiotic stress tolerant pigeonpea varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from the transcript identification number)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10

Similar content being viewed by others

Abbreviations

APOLO:

Long intergenic noncoding RNA transcribed by RNA polymerases II and V in response to auxin in arabidopsis

ASCO:

Alternative splicing competitor

At4:

Acyl transferase and synonym of Induced by phosphate starvation 1

COOLAIR:

Intronic lncRNA can induce the epigenetic repression of FLC 

DCL5:

Dicer-like 5

Enod40:

EARLYNODULIN40

eRNA:

Enhancer-associated RNA

GO:

Gene ontology

IPS1:

Induced by phosphate starvation 1

iRNA:

Intervening RNA

lincRNA:

Long intergenic non-coding RNAs

lncRNA:

Long non-coding RNAs

MAC3:

Pre-mRNA-processing factor 19 homolog 1

miRNAs:

MicroRNAs

Mt4:

Metallothionein 4

ncRNAs:

Non-coding RNAs

npcRNAs:

Non protein-coding RNAs

PHO2:

Phosphate2

PHO2:

Pi over accumulator

pRNA:

Promoter-associated RNA

PWP2:

Periodic tryptophan protein 2

RhoGAP:

Rho GTPase activation protein

snoRNAs:

Small nucleolar RNAs

TPS:

Trehalose-6-phosphate synthase

References

  • Amor B, Wirth S, Merchan F et al (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, Crespi M (2014) Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 55:383–396

    Article  PubMed  CAS  Google Scholar 

  • Arrial RT, Togawa RC, de Brigido M (2009) Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus Paracoccidioides brasiliensis. BMC Bioinform 10:239

    Article  CAS  Google Scholar 

  • Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh S (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea, (Cajanus spp.). BMC Plant Biol 11:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonasio R, Shiekhattar R (2014) Regulation of transcription by long noncoding RNAs. Annu Rev Genet 48:433–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS, Ribacke U, Volkman S, Duraisingh M, Wirth D, Sabeti PC, Rinn JL (2011) A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol 12:56

    Article  CAS  Google Scholar 

  • Burleigh SH, Harrison MJ (1997) A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol Biol 34:199–208

    Article  PubMed  CAS  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. https://doi.org/10.1101/gad.17446611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16:1047–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhary S, Singh AK, Yasin JK (2017) Metallothionein: protein structure prediction and sequence analyses in pigeon pea (Cajanus cajan). J AgriSearch. https://doi.org/10.21921/jas.v4i04.10209

    Article  Google Scholar 

  • Chen LL, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22:357–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark MB, Mattick JS (2011) Long noncoding RNAs in cell biology. Semin Cell Dev Biol 22:366–376

    Article  PubMed  CAS  Google Scholar 

  • Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, Dinger ME, Mattick JS (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res 22:885–898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 18:3674–3676

    Article  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109:2654–2659

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubey AN, Farmer AN, Schlueter JE, Cannon SB, Abernathy BR, Tuteja RE, Woodward JI, Shah TR, Mulasmanovic BE, Kudapa HI, Raju NL (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res 18:153–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. New York, Plenum Press, p 345

    Book  Google Scholar 

  • Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol. 11:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FAOSTAT, http://faostat3.fao.org/.

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037. https://doi.org/10.1038/ng2079

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Obermayer R (1998) Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Plant Syst Evol 212:135–141

    Article  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  PubMed  CAS  Google Scholar 

  • Hitosugi T, Chen J (2014) Post-translational modifications and the Warburg effect. Oncogene 33(34):4279

    Article  PubMed  CAS  Google Scholar 

  • Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y (2013) A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25:4166–4182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jathish P, Vanessa W, Markus S (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci 2(70):1–6. https://doi.org/10.3389/fpls.2011.00070

    Article  CAS  Google Scholar 

  • Jayasena CS, Le AT, Marianne B (2011) Live imaging of endogenous periodic tryptophan protein 2 gene homologue during zebrafish development. Dev Dyn 240(11):2578–2583

    Article  PubMed  CAS  Google Scholar 

  • Jiangtao C, Yingzhen K, Qian W, Yuhe S, Daping G, Jing L, Guanshan L (2015) MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi Chuan 37:91–97

    PubMed  Google Scholar 

  • Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X (2011) The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kompelli SK, Kompelli VS, Enjala C, Suravajhala P (2015) Genome-wide identification of miRNAs in pigeonpea (Cajanus cajan L.). AJCS 9:215–222

    CAS  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 36:W345-349

    Article  Google Scholar 

  • Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B, Kramer R, Bohra A, Weeks NT, Crow JA, Tuteja R, Shah T (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using Sanger and second-generation sequencing platforms. Mol Plant 5:1020–1028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakhotia SC (2012) Long non-coding RNAs coordinate cellular responses to stress. RNA 3:779–796

    PubMed  CAS  Google Scholar 

  • Li A, Zhang J, Zhou Z (2014) PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics 15:311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Wang H, Chua NH (2015) Long noncoding RNA transcriptome of plants. Plant Biotechnol J 13:319–328

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:R17-29. https://doi.org/10.1093/hmg/ddl046

    Article  PubMed  CAS  Google Scholar 

  • Nix A, Paull CA, Colgrave M (2015) The flavonoid profile of pigeonpea, Cajanus cajan: a review. Springerplus 4:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raju NL, Gananesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ, Byregowda M, Singh NK, Varshney RK (2010) The first set of EST resource for gene discovery an marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biol 10:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy BVS, Green JM, Bise SS (1978) Genetic male sterility in pigeonpea. Crop Sci 18:362–364

    Article  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeonpea: a review. Trop Plant Biol 1:159–178

    Article  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin H, Shin HS, Chen R, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    Article  PubMed  CAS  Google Scholar 

  • Singh S et al (2020) A 62K genic-SNP chip array for genetic studies and breeding applications in pigeonpea (Cajanus cajan L Millsp). Sci Rep 10:4960. https://doi.org/10.1038/s41598-020-61889-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462:799–802

    Article  PubMed  CAS  Google Scholar 

  • Tian J, Song Y, Du Q, Yang X, Ci D, Chen J, Xie J, Li B, Zhang D (2016) Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J Exp Bot 67:2467–2482

    Article  PubMed  CAS  Google Scholar 

  • Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution and mechanisms. Cell 154:26–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomics era. Curr Opin Plant Biol 12:202–210

    Article  PubMed  Google Scholar 

  • Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S, Sharma TR, Rosen B, Carrasquilla-Garcia N, Farmer AD, Dubey A (2010) Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breeding 26:393–408

    Article  CAS  Google Scholar 

  • Wang YQ, Fan XD, Lin F, He GM, Terzaghi W, Zhu DM, Deng XW (2014) Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci USA 111:10359–10364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT and TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22(6):1733–1748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu XW, Zhou XH, Wang RR, Peng WL, An Y, Chen LL (2016) Functional analysis of long intergenic non-coding RNAs in phosphate-starved rice using competing endogenous RNA network. Sci Rep 6:20715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Z, Hutter D, Sheng P, Sismour AM, Benner SA (2006) Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucl Acids Res 34:6095–6101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasin JK (2015) Intra cellular pH flux and cyclosis in plant cells under abiotic stress. J AgriSearch 2(2):150–151

    Google Scholar 

  • Yasin JK, Chaudhary S, Prasad BN, Pillai MA, Verma N, Singh AK (2019) Role of Lanc like G protein-coupled receptor-2with BOP and BTB/POZ in stress tolerance and high yielding trait of Pigeonpea. J AgriSearch 6(3):105–112. https://doi.org/10.21921/jas.v6i03.16213

    Article  Google Scholar 

  • Yasin JK, Mishra BK, Pillai MA et al (2020) Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions. Sci Rep 10:17203. https://doi.org/10.1038/s41598-020-73140-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasin JK, Nizar MA, Rajkumar S, Verma M, Verma N, Pandey S, Tiwari SK, Radhamani J (2014) Existence of alternate defense mechanisms for combating moisture stress in horse gram [Macrotyloma uniflorum (Lam.) Verdc.]. Legume Res 37(2):145–154. https://doi.org/10.5958/j.0976-0571.37.2.022

    Article  Google Scholar 

  • Yasin JK, Tyagi H, Singh AK, Magadum S (2016) Abiotic stress tolerance in soybean: regulated by ncRNA. J AgriSearch 3(1):1–6

    Google Scholar 

  • Yoon JH, Abdelmohsen K, Gorospe M (2013) Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425:3723–3730

    Article  PubMed  CAS  Google Scholar 

  • Zhang YC, Chen YQ (2013) Long noncoding RNAs: new regulators in plant development. Biochem Biophys Res Commun 436:111–114

    Article  PubMed  CAS  Google Scholar 

  • Zhu QH, Stephen S, Taylor J, Helliwell CA, Wang MB (2014) Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol 201:574–584

    Article  PubMed  CAS  Google Scholar 

  • Zhu QH, Wang MB (2012) Molecular functions of long non-coding RNAs in plants. Genes 3:176–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz- Ares J (2007a) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  Google Scholar 

  • Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007b) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the Director, ICAR-NBPGR, New Delhi, India for providing all the necessary facilities to carry out this work. The authors acknowledge Indian Council of Agricultural Research, New Delhi and Indo- Swiss collaboration in Biotechnology for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

YJK and VC planned and organized the research; YJK and BKM conducted research; YJK and MAP wrote the manuscript; VC edited the manuscript; all authors read and accepted the final version of the manuscript.

Corresponding author

Correspondence to Jeshima Khan Yasin.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13562_2021_674_MOESM1_ESM.xlsx

Supplementary material 1. List of identified putative lncRNAs containing source sequences selected after filtering for lincRNA identification. Supplementary material 2. (2a, 2b, 2c) Confirmed lincRNA positions next to functional genes in genome browser. Supplementary material 3. Map positions of identified lincRNAs in Glycine. Supplementary material 4. GO enrichment analysis of genes linked to lincRNAs were mined. Supplementary material 5. GO terms among biological processes. Supplementary material 6. Identified miRs and target sequences. Supplementary material 7. Putative cca-miRs targets from C.cajan. Supplementary material 8. Putative cca-miRs targets from G. max. (XLSX 63 kb)

Supplementary file2 (DOCX 930 kb)

Supplementary file3 (DOCX 25 kb)

Supplementary file4 (TIF 730 kb)

Supplementary file5 (XLSX 275 kb)

Supplementary file6 (XLSX 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasin, J.K., Mishra, B.K., Arumugam Pillai, M. et al. Physical map of lncRNAs and lincRNAs linked with stress responsive miRs and genes network of pigeonpea (Cajanus cajan L.). J. Plant Biochem. Biotechnol. 31, 271–292 (2022). https://doi.org/10.1007/s13562-021-00674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-021-00674-0

Keywords

Navigation