Skip to main content
Log in

Prise en charge des pneumonies graves à pneumocoque — Pneumonies communautaires aiguës sévères à Streptococcus pneumoniae (PAC Sp): rôle de l’hôte et des facteurs de virulence bactérienne

Management of severe pneumococcal pneumonia — Severe acute community-acquired Streptococcus pneumoniae pneumonia (CAP SP): role of the host and bacterial virulence factors

  • Enseignement Supérieur en Réanimation
  • Published:
Réanimation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Pasteur (1881) Note sur la maladie nouvelle provoquée par la salive d’un enfant mort de la rage. Bull Acad Med (Paris) 10:94–104

    Google Scholar 

  2. Gray BM, Converse GM, Dilton HC (1980) Epidemiologoc studies of Streptococcus pneumoniae in infants: acquisition, carriage and infection during the first 24th month of life. J Infect Dis 142:923–933

    CAS  PubMed  Google Scholar 

  3. Moine P, Vercken JB, Chevret S, et al (1995) Severe communityacquired pneumococcal pneumonia. Scand J Infect Dis 27:201–206

    Article  CAS  PubMed  Google Scholar 

  4. Hook EW III, Horton CA, Schaberg DR (1983) Failure of intensive care unit support to influence mortality from pneumococcal bacteriema. JAMA 249:1055–1057

    Article  PubMed  Google Scholar 

  5. Watson DA, Musher DM, Jacobson JW, et al (1993) A brief history of the pneumococcus in biomedical research: a panoply of scientific discovery. Clin Infect Dis 17:913–924

    CAS  PubMed  Google Scholar 

  6. Campbell EA, Choi SY, Masure HR (1998) A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol Microbiol 27:929–939

    Article  CAS  PubMed  Google Scholar 

  7. Austrian R, Gold J (1964) Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann Intern Med 60:759–776

    CAS  PubMed  Google Scholar 

  8. Castle SC (2000) Clinical relevance of age-related immune dysfunction. Clin Infect Dis 31:578–585

    Article  CAS  PubMed  Google Scholar 

  9. Bruce MG, Deeks SL, Zulz T, et al (2008) International circumpolar surveillance system for invasive pneumococcal disease, 1999–2005. Emerg Infect Dis 14:25–33

    Article  PubMed  Google Scholar 

  10. Vander BPC T, Opal SM (2009) Pathogenesis treatment, and prevention of pneumococcal pneumonia. Lancet 374:1543–1556

    Article  CAS  Google Scholar 

  11. Kim PE, Musher DM, Glezen WP, et al (1996) Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis 22:100–106

    CAS  PubMed  Google Scholar 

  12. Bogaert D, de Groot R, Hermans R (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–154

    Article  CAS  PubMed  Google Scholar 

  13. Jehl F, Bédos JP, Poirier R, et al (2002) Enquête nationale sur les pneumonies communautaires à pneumocoques chez des malades adultes hospitalisés. Med Mal Infect 32:267–283

    Article  Google Scholar 

  14. Garcia-Vidal C, Frenandez-Sabé N, Carratalà J, et al (2008) Early mortality in patients with community-acquired pneumonia: causes and risk factors. Eur Respir J 32:733–739

    Article  CAS  PubMed  Google Scholar 

  15. Bordon J, Peyrani P, Brock G, et al (2008) The presence of pneumococcal bacteremia does not influence clinical outcomes in patients with community-acquired pneumonia. Chest 133:618–624

    Article  PubMed  Google Scholar 

  16. Song JH, Jung SI, Ki HK, et al (2004) Clinical outcomes of pneumococcal pneumonia caused by antibiotic-resistant strains in Asian countries: a study by the Asian network for surveillance of resistant pathogens. Clin Infect Dis 38:1570–1578

    Article  PubMed  Google Scholar 

  17. Brouwer MC, de Gans J, Heckenberg SGB, et al (2009) Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 9:31–44

    Article  CAS  PubMed  Google Scholar 

  18. Jonsson G, Truedsson L, Sturfelt G, et al (2005) Hereditary C2 deficiency in Sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine (Baltimore) 84:23–34

    Article  Google Scholar 

  19. Medvedev EA, Lentschat A, Kuhns DB, et al (2003) Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J Exp Med 198:521–531

    Article  CAS  PubMed  Google Scholar 

  20. Picard C, Puel A, Bonnet M, et al (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299:2076–2079

    Article  CAS  PubMed  Google Scholar 

  21. Enders A, Pannicke U, Berner R, et al (2004) Two siblings with lethal pneumococcal meningitis in a family with a mutation in interleukin-1 receptor-associated kinase 4. J Pediatr 145:698–700

    Article  PubMed  Google Scholar 

  22. Ku Cl, von Bernuth H, Picard C, et al (2007) Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med 204:2407–2422

    Article  CAS  PubMed  Google Scholar 

  23. Döffinger R, Smahi A, Bessia C, et al (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285

    Article  PubMed  Google Scholar 

  24. Moens L, Verhaegen J, Pierik M, et al (2007) Toll-like receptor 2 and Toll-like receptor 4 polymorphism in invasive pneumococcal disease. Microbes Infect 9:15–20

    Article  CAS  PubMed  Google Scholar 

  25. Khor CC, Chapman SJ, Vannberg FO, et al (2007) A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39:523–528

    Article  CAS  PubMed  Google Scholar 

  26. Chapman SJ, Khor CC, Vannberg FO, et al (2007) IkB genetic polymorphisms and invasive pneumococcal disease. Am J Respir Crit Care Med 176:181–187

    Article  CAS  PubMed  Google Scholar 

  27. Yuan FF, Marks K, Wong M, et al (2008) Clinical relevance of TLR2, TLR4, CD14 and Fcy RIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 86:268–270

    Article  CAS  PubMed  Google Scholar 

  28. Yee AM, Phan HM, Zuniga R, et al (2000) Association between FcyRIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin Infect Dis 30:25–28

    Article  CAS  PubMed  Google Scholar 

  29. Yuan FF, Wong M, Pereva N, et al (2003) FcyRIIA polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 81:192–195

    Article  CAS  PubMed  Google Scholar 

  30. Moens L, Van Hoeyveld E, Verhaegen J, et al (2006) Fcy-receptor IIA genotype and invasive pneumococcal infection. Clin Immunol 118:20–23

    Article  CAS  PubMed  Google Scholar 

  31. Roy S, Knox K, Segal S, et al (2002) MBL genotype and risk of invasive pneumococcal disease; a case-control study. Lancet 359:1569–1573

    Article  CAS  PubMed  Google Scholar 

  32. Kronborg G, Weis N, Madsen HO, et al (2002) Variant mannosebinding lectin alleles are non associated with susceptibility to or outcome of invasive pneumococcal infection in randomly included patients. J Infect Dis 185:1517–1520

    Article  CAS  PubMed  Google Scholar 

  33. Moens L, Van Hoeyveld E, Peetermans WE, et al (2006) Mannose binding lectin genotype and invasive pneumococcal infection. Hum Immunol 67:605–611

    Article  CAS  PubMed  Google Scholar 

  34. Shaaf BM, Boehmke F, Esnaashari H, et al (2003). Pneumococcal septic shock is associated with the interleukin-10-1082 gene promoter polymorphism. Am J Respir Crit Care Med 168(4):476–480

    Article  Google Scholar 

  35. Schaaf B, Rupp J, Muller-Steinhardt M, et al (2005) The interleukin-6-174 promoter polymorphism is associated with extrapulmonary bacterial dissemination in Streptococcus pneumoniae infection. Cytokine 31:324–328

    Article  CAS  PubMed  Google Scholar 

  36. Roy S, Hill AV, Knox K, Griffiths D, Crook D (2002) Research pointer: association of common genetic variant with susceptibility to invasive pneumococcal disease. BMJ 324:1369

    Article  CAS  PubMed  Google Scholar 

  37. Chapman SJ, Khor CC, Vannberg FO, et al (2006) PTPN22 and invasive bacterial disease. Nat Genet 38:499–500

    Article  CAS  PubMed  Google Scholar 

  38. Chapman SJ, Vannberg FO, Khor CC, et al (2007) Functional polymorphism in the FCN2 gene are not associated with invasive pneumococcal disease. Mol Immunol 44:3267–3270

    Article  CAS  PubMed  Google Scholar 

  39. Yende S, Angus DC, Kong L, et al (2009) The influence of macrophage migration inhibitory factor gene polymorphisms on outcome from community-acquired pneumoniae. FASEB J 23:2403–2411

    Article  CAS  PubMed  Google Scholar 

  40. Bédos JP, Rolin O, Bouanchaud DH, Pocidalo JJ (1991) Relationship between virulence and resistance to antimicrobial in pneumoccoci. Contribution of experimental data obtained in animal model. Pathol Biol (Paris) 39:984–990

    Google Scholar 

  41. Briles DE, Crain MJ, Gray BM, et al (1992) Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect Immun 60:111–116

    CAS  PubMed  Google Scholar 

  42. Martens P, Worm SW, Lundgren B, et al (2004) Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited. BMC Infectious Diseases 4:21

    Article  PubMed  Google Scholar 

  43. Brueggemann AB, Griffiths DT, Meats E, et al (2003) Clonal relationship between invasive and carriage Streptococcus pneumoniae and serotype and clone specific differences in invasive disease potential. J infect Dis 187:1424–1432

    Article  CAS  PubMed  Google Scholar 

  44. Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Rev Microbiol 6:288–301

    Article  CAS  Google Scholar 

  45. Wood WB(1949) The inhibition of surface phagocytosis by the capsule “slime layer” of pneumococcus type III. J Exp Med 90:85–96

    Google Scholar 

  46. Watson DA, Muscher DM, Verhoef J (1995) Pneumococcal virulence factor and immune responses to them. Eur Microbiol Infect Dis 14:479–490

    Article  CAS  Google Scholar 

  47. Bergmann S, Hammerschmidt S (2006) Versatility of pneumococcal surface proteins. Microbiology 152:295–303

    Article  CAS  PubMed  Google Scholar 

  48. Moxon ER, Kroll JS (1990) The role of bacterial polysaccharide capsules as virulence factors. Curr Top Microbiol Immunol 150:65–86

    CAS  PubMed  Google Scholar 

  49. Wilkelstein JA (1981) The role of complement in the host’s defense against Streptococcus pneumoniae. Rev Infect Dis 3:289–298

    Google Scholar 

  50. Musher DM (1992) Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity and treatment. Clin Infect Dis 14:801–807

    CAS  PubMed  Google Scholar 

  51. Abeyta M, Hardy GG, Yother J (2003) Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun 17:218–225

    Article  CAS  Google Scholar 

  52. Fine DP (1975) Pneumococcal type-associated variability in alternate complement pathway activation. Infect Immun 12:772–778

    CAS  PubMed  Google Scholar 

  53. Hostetter MK, Krueger RA, Schmeling DJ (1984) The biochemistry of opsonization: central role of the reactive thiolester of the third component of complement. J Infect Dis 150:653–661

    CAS  PubMed  Google Scholar 

  54. Van Dam JE, Fleer A, Snippe H (1990) Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Infect Immun 59:2750–2757

    Google Scholar 

  55. Fernebro J, Andersson I, Sublett J, et al (2004) Capsular expression in Streptococcus pneumoniae negatively affects spontaneous and antibiotic induced lysis and contributes to antibiotic tolerance. J Infect Dis 189:328–338

    Article  CAS  PubMed  Google Scholar 

  56. Cundell DR, Gerard NP, Gerard C, et al (1995) Streptococcus pneumoniae anchor to activate humain cells by receptor for platelet activating factor. Nature 377:435–438

    Article  CAS  PubMed  Google Scholar 

  57. Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood-rain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 102:347–360

    CAS  Google Scholar 

  58. De La Rivas B, Garcia JL, Lopez R, Garcia P (2001) Molecular characterization of the pneumococcal teichoic acid phosphorylcholine esterase. Microb Drug Resist 7:213–222

    Article  PubMed  Google Scholar 

  59. Vollmer W, Tomasz A (2001) Identification of the techoic acid phophorylcholine esterase in Streptococcus pneumoniae. Mol Microbiol 39:1610–1622

    Article  CAS  PubMed  Google Scholar 

  60. Wartha F, Beiter K, Albiger B, et al (2007) Capsule and Dalanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol 1162:1171

    Google Scholar 

  61. Kovacs M, Halfmann A, Fedtke I, et al (2006) A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188:5797–5805

    Article  CAS  PubMed  Google Scholar 

  62. Hammerschmidt S (2006) Adherence molecules of pathogenic pneumococci. Current Opinion in Microbiology 9:12–20

    Article  CAS  PubMed  Google Scholar 

  63. Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301

    Article  CAS  PubMed  Google Scholar 

  64. Mitchell AM, Mitchell TJ (2010) Streptococcus pneumoniae: virulence factors and variation. Clin Microb Infect 16:411–418

    Article  CAS  Google Scholar 

  65. Lock RA, Zhang QY, Berry AM, Paton JC (1996) Sequence variation in the Streptococcus pneumoniae pneumolysin gene affecting haemolytic activity and electrophoretic mobility of the toxin. Infect Immun 21:71–83

    CAS  Google Scholar 

  66. Kirkham LA, Jefferies JM, Kerr AR, et al (2006) Identification of invasive serotype 1 pneumococcal isolates that express nonhemolytic pneumolysin. J Clin Microbiol 44:155–159

    Article  CAS  Google Scholar 

  67. Tilley S, Orlova E, Gilbert R, et al (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256

    Article  CAS  PubMed  Google Scholar 

  68. Hirst R, Kadioglu A, O’Callaghan C, Andrew P (2004) The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol 138:195–201

    Article  CAS  PubMed  Google Scholar 

  69. Kadioglu A, Coward W, Colston M, et al (2004) CDAT-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 72:2689–2697

    Article  CAS  PubMed  Google Scholar 

  70. Mitchell TJ, Andrew PW, Saunders FK, et al (1991) Complement activation and antibody binding by pneumolysin via a region homologous to a human acute phase protein. Mol Microbiol 5:1883–1888

    Article  CAS  PubMed  Google Scholar 

  71. Rubins JB, Charboneau D, Fasching C, et al (1996) Distinct roles for pneumolysin’s cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am J Respir Crit Care Med 153:1339–1346

    CAS  PubMed  Google Scholar 

  72. Alexander JE, Berry AM, Paton JC, et al (1998) Amino acid changes affecting the behavior of pneumococci in pneumonia. Microb Pathog 24:167–174

    Article  CAS  PubMed  Google Scholar 

  73. Jounblat R, Kadioglu A, Mitchell T, Andrew P (2003) Pneumococcal behaviour and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin. Infect Immun 71:1813–1819

    Article  CAS  PubMed  Google Scholar 

  74. Malley R, Henneke P, Morse SC, et al (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Nath Acad Sci USA 100:1966–1971

    Article  CAS  Google Scholar 

  75. Baba H, Kawamura I, Kohda C, et al (2002). Induction of gamma interferon and nitric oxide by truncated pneumolysin that lacks pore-forming activity. Infect Immun 70:107–113

    Article  CAS  PubMed  Google Scholar 

  76. Berry AM, Alexander JE, Mitchell TJ, et al (1995) Effect of defined point mutations in the pnemolysin gene on the virulence of Streptococcus pneumoniae. Infect Immun 63:1969–1974

    CAS  PubMed  Google Scholar 

  77. Canvin JR, Marvin AP, Sivakumaran M, et al (1995) The role of pneumolysin and autolysin in the pathology of pneumonia and septicaemia in mice infected with a type 2 pneumococcus. J Infect Dis 172:119–123

    CAS  PubMed  Google Scholar 

  78. Alexander JE, Lock RA, Peeters CC, et al (1994) Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun 62:5683–5688

    CAS  PubMed  Google Scholar 

  79. Kadioglu A, Taylor S, Iannelli F, et al (2002) Upper and lower respiratory tract infection by Streptococcus pneumoniae is affected by pneumolysin deficiency and differences in capsule type. Infect Immun 70:2886–2890

    Article  CAS  PubMed  Google Scholar 

  80. Orihuela CJ, Gao GL, Francis KP, Yu J (2004) Tuomanen EI. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 190:1661–1669

    Article  CAS  PubMed  Google Scholar 

  81. Berry AM, Yother J, Briles DE, et al (1989) Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect Immun 57:2037–2042

    CAS  PubMed  Google Scholar 

  82. Berry AM, Ogunniyi AD, Miller DC, Paton JC (1999) Comparative virulence of Streptococcus pneumoniae strains with insertionduplication, point, and deletion mutations in the pneumolysin gene. Infect Immun 67:981–985

    CAS  PubMed  Google Scholar 

  83. Kadioglu A, Gingles NA, Grattan K, et al (2000) Host cellular immune response to pneumococcal lung infection in mice. Infect Immun 68:1557–1562

    Article  Google Scholar 

  84. Benton KA, Everson MP, Briles DE (1995) A pneumolysin negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect Immun 63:448–455

    CAS  PubMed  Google Scholar 

  85. Shelburne SA, Davenport MT, Keith DB, Musser JM (2008) The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends in Microbiol 16:318–325

    Article  CAS  Google Scholar 

  86. Orihuela CJ, Radin JN, Sublett JE, et al (2004) Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72:5582–5596

    Article  CAS  PubMed  Google Scholar 

  87. Iyer R, Camilli A (2007) Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae. Mol Microbiol 66:1–13

    Article  CAS  PubMed  Google Scholar 

  88. Abbott DW, Higgins MA, Hyrnuik S, et al (2010) The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae. Mol Microb 77:183–199

    Article  CAS  Google Scholar 

  89. Lammerts van Bueren A, Higgins M, Wang D, et al (2007) Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors. Nat Struct Mol Biol 14:76–84

    Article  CAS  Google Scholar 

  90. King SJ, Hippe KR, Gould J, Bae D, et al (2004) Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol Microbiol 54:159–171

    Article  CAS  PubMed  Google Scholar 

  91. King SJ, Hippe KR, Weiser JN (2006) Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59:961–974

    Article  CAS  PubMed  Google Scholar 

  92. Burnaugh AM, Frantz LJ, King SJ (2008) Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol 190:221–230

    Article  CAS  PubMed  Google Scholar 

  93. Stephenson K, Hoch JA (2002) Two-component and phosphorelay signal-transduction systems as therapeutic targets. Current Opinion in Pharmacology 2:507–512

    Article  CAS  PubMed  Google Scholar 

  94. Throup JP, Koretke KK, Bryant AP, et al (2000) A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol 35:566–576

    Article  CAS  PubMed  Google Scholar 

  95. MA Z, Zhang JR (2007) RR06 activates transcription of spr1996 and cbpA in Streptococcus pneumoniae. J Bacteriol 189:2497–2509

    Article  CAS  PubMed  Google Scholar 

  96. McCluskey J, Hinds J, Husain S, et al (2004) A two-component system that controls the expression of pneumococcal surface antigen A (PsaA) and regulates virulence and resistance to oxidative stress in Streptococcus pneumoniae. Mol Microbiol 51:1661–1675

    Article  CAS  PubMed  Google Scholar 

  97. Tettelin H, Nelson KE, Paulsen IT, et al (2001) Complete genome sequence of a virulente isolate of Streptococcus pneumoniae. Science 293:498–506

    Article  CAS  PubMed  Google Scholar 

  98. Lanie JA, Ng WL, Kazmierczak KM, et al (2007) Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J bacterial 189:38–51

    Article  CAS  Google Scholar 

  99. Obert C, Sublett J, Kaushal D, et al (2006) Identification of a candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect Immun 74:4766–4777

    Article  CAS  PubMed  Google Scholar 

  100. Hava DL, Camilli A (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45:1839–1846

    Google Scholar 

  101. Orihuela CJ, Radin JN, Sublett JE, et al (2004) Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72:5582–5596

    Article  CAS  PubMed  Google Scholar 

  102. William SP, Tait-Kamradt AG, Norton JE, et al (2007) Nucleotide sequence changes between Streptococcus pneumoniae R6 and D39 strains determined by oligonucleotide hybridization DNA sequencing neurology. J Microbiol methods 70:65–74

    Article  CAS  Google Scholar 

  103. Bijlsma JJ, Burghout P, Kloosterman TG, et al (2007) Development of genomic array footprinting for identification of conditionally essential genes in Streptococcus pneumoniae. Appl environ Microbiol 73:1514–1524

    Article  CAS  PubMed  Google Scholar 

  104. Weiser J, Austrian R, Sreenivasan PK, Masure H (1994) Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62:2582–2589

    CAS  PubMed  Google Scholar 

  105. Ogglioni MR, Trappetti C, Kadioglu A, et al (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61:1196–1210

    Article  CAS  Google Scholar 

  106. Van Der Poll T, M Opal S (2008) Host pathogen interactions in sepsis. Lancet Infect Dis 8:32–43

    Article  PubMed  CAS  Google Scholar 

  107. Gordon SB, Irving GR, Lawson RA, et al (2000) Intracellular trafficking and killing of Streptococcus pneumoniae by human alveolar macrophages are influenced by opsonins. Infect Immun 68: 2286–2293

    Article  CAS  PubMed  Google Scholar 

  108. Dockrell DH, Marriott HM, Prince LR, et al (2003) Alveolar macrophage apoptosis contributes to pneumococcal clearance in resolving model of pulmonary infection. J Immunol 171:53-80–53-88

    CAS  Google Scholar 

  109. Kadioglu A, Coward W, Colston M, et al (2004) CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the response to pneumococcal infection. Infect Immun 72:2689–2697

    Article  CAS  PubMed  Google Scholar 

  110. Kawakami K, Yamamoto N, Kinjo Y, et al (2003) Critical role of Valpha 14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33:3322–3330

    Article  CAS  PubMed  Google Scholar 

  111. Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogen. Eur Respir J 23:327–333

    Article  CAS  PubMed  Google Scholar 

  112. Knapp S, Weiland CW, Van t Veer C, et al (2004) Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumoniae but does not contribute to antibacterial defense. J Immunol 172:3132–3138

    CAS  PubMed  Google Scholar 

  113. Malley R, Henneke P, Morse SC, et al (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100:1966–1971

    Article  CAS  PubMed  Google Scholar 

  114. Albiger B, Dahlberg S, Sandgren A, et al (2007) Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol 9:633–644

    Article  CAS  PubMed  Google Scholar 

  115. Xu F, Droemann D, Rupp J, et al (2008) Modulation of the inflammatory response to Streptococcus pneumoniae in a model of acute lung tissue infection. Am J Respir Cell Mol Biol 39:522–529

    Article  CAS  PubMed  Google Scholar 

  116. Von Bermuth H, Picard C, Zhongbo J, et al (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321:691–696

    Article  CAS  Google Scholar 

  117. Ku Cl, von Bermuth H, Picard C, et al (2007) Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med 204:2407–2422

    Article  CAS  PubMed  Google Scholar 

  118. Dessing MC, Knapp S, Florquin S, et al (2007) CD14 facilitates invasive respiratory tract infection by Streptococcus pneumoniae. Am J Respir Crit Care Med 175:604–611

    Article  PubMed  Google Scholar 

  119. Koppel EA, Litjens M, van den Berg VC, et al (2008) Interaction of SIGNR1 expressed by marginal zone macrophages with marginal zone B cells is essential to early IgM responses against Streptococcus pneumoniae. Mol Immunol 45:2881–2887

    Article  CAS  PubMed  Google Scholar 

  120. van der Poll T, M Opal S (2009) Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374:1543–1556

    Article  PubMed  CAS  Google Scholar 

  121. van der Poll T, Keogh CV, Buurman WA, Lowry SF (1997) Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumonia in mice. Am J Respir Crit Care Med 155:603–608

    PubMed  Google Scholar 

  122. van der Poll T, Keogh CV, Guirao X, et al (1997) Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. J Infect Dis 176:439–444

    Article  PubMed  Google Scholar 

  123. van der Sluijs KF, van Elden LJ, Nijhuis M, et al (2004) IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol 172:7603–7609

    PubMed  Google Scholar 

  124. Rubins JB, Pomeroy C (1997) Role of gamma interferon in the pathogenesis of bacteremic pneumococcal pneumoniae. Infect Immun 65:2975–2977

    CAS  PubMed  Google Scholar 

  125. Mohler J, Azoulay-Dupuis E, Amory-Rivier C, et al (2003) Streptococcus pneumoniae stain-dependent lung inflammatory responses in a murine model of pneumococcal pneumonia. Intensive Care Med 29(5):808–816

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -P. Bedos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedos, J.P., Moine, P. Prise en charge des pneumonies graves à pneumocoque — Pneumonies communautaires aiguës sévères à Streptococcus pneumoniae (PAC Sp): rôle de l’hôte et des facteurs de virulence bactérienne. Réanimation 20 (Suppl 2), 406–417 (2011). https://doi.org/10.1007/s13546-010-0128-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-010-0128-8

Navigation