Skip to main content
Log in

Dynamical Properties for a Tunable Circular to Polygonal Billiard

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a billiard whose boundary varies from a circular to a polygonal billiard. To describe the billiard boundary, we use a parametric equation, which needs to be solved numerically. We provide a detailed explanation about how to obtain the radius of the billiard boundary R for each angular position \(\theta\), where we used a tangent method to speed up the numerical simulations. We consider another tangent method to find the billiard boundary’s intercept and the particle’s trajectory. Furthermore, we show some trajectories’ examples and describe what happens with the phase space and Lyapunov exponents when changing the deformation. We present results for different values of the control parameter related to the number of edges of our polygon and the billiard with a triangular-like boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.I. Arita, M. Brack, Anomalous shell effect in the transition from a circular to a triangular billiard. Phys. Rev. E 77(5) 056211 (2008)

  2. M.V. Berry, Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ’billiard’. Eur. J. Phys. 2(2), 91–102 (1981). https://doi.org/10.1088/0143-0807/2/2/006

  3. E.D. Leonel, L. Bunimovich, Suppressing Fermi acceleration in a driven elliptical billiard. Phys. Rev. Lett. 104, 224101 (2010). https://doi.org/10.1103/PhysRevLett.104.224101

  4. J.P. Bird, Recent experimental studies of electron transport in open quantum dots. J. Phys. Condens. Matter. 11(38), R413–R437 (1999). https://doi.org/10.1088/0953-8984/11/38/201

  5. V. Milner, J.L. Hanssen, W.C. Campbell, M.G. Raizen, Optical billiards for atoms. Phys. Rev. Lett. 86, 1514–1517 (2001). https://doi.org/10.1103/PhysRevLett.86.1514

  6. N. Friedman, A. Kaplan, D. Carasso, N. Davidson, Observation of chaotic and regular dynamics in atom-optics billiards. Phys. Rev. Lett. 86, 1518–1521 (2001). https://doi.org/10.1103/PhysRevLett.86.1518

  7. M.F. Andersen, T. Grünzweig, A. Kaplan, N. Davidson, Revivals of coherence in chaotic atom-optics billiards. Phys. Rev. A 69, 063413 (2004). https://doi.org/10.1103/PhysRevA.69.063413

  8. M.F. Andersen, A. Kaplan, T. Grünzweig, N. Davidson, Decay of quantum correlations in atom optics billiards with chaotic and mixed dynamics. Phys. Rev. Lett. 97, 104102 (2006). https://doi.org/10.1103/PhysRevLett.97.104102

  9. H.D. Gräf, H.L. Harney, H. Lengeler, C.H. Lewenkopf, C. Rangacharyulu, A. Richter, P. Schardt, H.A. Weidenmüller, Distribution of eigenmodes in a superconducting stadium billiard with chaotic dynamics. Phys. Rev. Lett. 69, 1296–1299 (1992). https://doi.org/10.1103/PhysRevLett.69.1296

  10. T. Sakamoto, Y. Takagaki, S. Takaoka, K. Gamo, K. Murase, S. Namba, Electron focusing in a widely tapered cross junction. Jpn. J. Appl. Phys. 30(Part 2, No. 7A), L1186–L1188 (1991). https://doi.org/10.1143/jjap.30.l1186

  11. D. Sweet, B.W. Zeff, E. Ott, D.P. Lathrop, Three-dimensional optical billiard chaotic scattering. Physica D: Nonlinear Phenomena 154(3), 207–218 (2001). https://doi.org/10.1016/S0167-2789(01)00235-4

  12. D.R. da Costa, M.R. Silva, E.D. Leonel, Escape beam statistics and dynamical properties for a periodically corrugated waveguide. Commun. Nonlinear Sci. Numer. Simul. 19(4), 842–850 (2014). https://doi.org/10.1016/j.cnsns.2013.08.009

  13. M.R. Silva, D.R. da Costa, E.D. Leonel, Characterization of multiple reflections and phase space properties for a periodically corrugated waveguide. J. Phys. A Math. Theor. 45(26), 265101 (2012). https://doi.org/10.1088/1751-8113/45/26/265101

  14. E.D. Leonel, D.R. da Costa, C.P. Dettmann, Scaling invariance for the escape of particles from a periodically corrugated waveguide. Phys. Lett. A 376(4), 421–425 (2012). https://doi.org/10.1016/j.physleta.2011.11.027

  15. E. Persson, I. Rotter, H.J. Stöckmann, M. Barth, Observation of resonance trapping in an open microwave cavity. Phys. Rev. Lett. 85, 2478–2481 (2000). https://doi.org/10.1103/PhysRevLett.85.2478

  16. E.D. Leonel, Corrugated waveguide under scaling investigation. Phys. Rev. Lett. 98, 114102 (2007). https://doi.org/10.1103/PhysRevLett.98.114102

  17. C.M. Marcus, A.J. Rimberg, R.M. Westervelt, P.F. Hopkins, A.C. Gossard, Conductance fluctuations and chaotic scattering in ballistic microstructures. Phys. Rev. Lett. 69, 506–509 (1992). https://doi.org/10.1103/PhysRevLett.69.506

  18. J. Stein, H.J. Stöckmann, Experimental determination of billiard wave functions. Phys. Rev. Lett. 68, 2867–2870 (1992). https://doi.org/10.1103/PhysRevLett.68.2867

  19. G. Del Magno, J. Lopes Dias, P. Duarte, J. Pedro Gaivão, D. Pinheiro, Chaos in the square billiard with a modified reflection law. Chaos: An Interdisciplinary Journal of Nonlinear Science 22(2), 026106 (2012)

  20. J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985). https://doi.org/10.1103/RevModPhys.57.617

  21. E.G. Altmann, A.E. Motter, H. Kantz, Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space. Phys. Rev. E 73, 026207 (2006). https://doi.org/10.1103/PhysRevE.73.026207

  22. M.S. Santos, M. Mugnaine, J.D. Szezech, A.M. Batista, I.L. Caldas, R.L. Viana, Using rotation number to detect sticky orbits in Hamiltonian systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 29(4), 043125 (2019). https://doi.org/10.1063/1.5078533

Download references

Acknowledgements

DRC acknowledges São Paulo Research Foundation (FAPESP, Brazil) (Grant No. 2020/02415-7) and National Council for Scientific and Technological Development (CNPq, Brazil) (Grant No. 162944/2020-9). The authors also acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Araucária.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Ricardo da Costa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, D.R., Fujita, A., Sales, M.R. et al. Dynamical Properties for a Tunable Circular to Polygonal Billiard. Braz J Phys 52, 75 (2022). https://doi.org/10.1007/s13538-022-01075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01075-x

Keywords

Navigation