Skip to main content
Log in

Pulsatile Flow of EMHD Micropolar Hybrid Nanofluid in a Porous Bifurcated Artery With an Overlapping Stenosis in the Presence of Body Acceleration and Joule Heating

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The aim of the present work is to examine the electro-kinetic pulsatile transport of hybrid a nanofluid (\(Ag-TiO_2/\)blood) in a porous bifurcated artery with an overlapping stenosis in the parent lumen subjected to a uniform magnetic field and periodic acceleration of the human body. The rheology of the base fluid (blood) is characterized by a micropolar fluid in order to model the impact of microrotation of the microelements (blood cells). The heat transfer analysis has been explored by considering viscous dissipation and Joule heating features. The electric double layer (EDL) and charge distribution are demonstrated by the Poisson–Boltzmann equation, which is linearized by means of the Debye–Hückel approximation. An analytical expression for the electric potential function is derived by solving the linearized Poisson–Boltzmann equation. The appropriate equations for the governing two-dimensional flow are normalized and simplified into the one-dimensional flow by considering the mild stenotic and low Reynolds number approximations, and a suitable coordinate conversion is utilized to convert the boundary of bifurcated artery into a well-designed boundary. The transformed coupled nonlinear partial differential equations are solved numerically by adopting the Crank–Nicolson finite difference technique subjected to appropriate initial and boundary conditions. The impact of physiological factors on the flow characteristics such as axial velocity, microrotation, temperature, wall shear stress and resistance to flow has been analyzed on both sides of the apex for \(Ag-\)blood as well as \((Ag-TiO_2)/\)blood flow models. Also, a comparative analysis between the results of nanofluid (\(Ag-\)blood) and hybrid nanofluid (\(Ag-TiO_2/\)blood) has been made. Finally, the Nusselt number is computed at the critical height of stenosis and recorded in tabular form for both \(Ag-\)blood and \((Ag-TiO_2)/\)blood flow models. These results display that axial flow, microrotation of particles and thermal performance in bifurcated arteries can be normalized by regulating the magnetic and electro-osmotic parameters. The EDL thickness (inversion of electro-osmotic parameter) plays a vital role in attenuating the wall shear stress and resistance to flow in the stenotic bifurcated artery. The heat transfer rate at the stenotic wall increases with the Brinkman and Grashof numbers and decays with the severity of stenosis and micropolar coupling number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

−:

Represents the dimensional quantities

\(\overline{z},\, \overline{r}\) :

Axial and radial coordinate, respectively

\(\overline{R}_0\) :

Radius of the parent artery in the unconstricted region

\(\overline{r}_0\) :

Radius of the daughter artery

\(\overline{R}_1,\, \overline{R}_2\) :

Radius of outer and inner walls, respectively

\(\overline{B}_0\) :

Magnetic field

\(\overline{E}_0\) :

Electric field

\(\overline{u},\, \overline{v}\) :

Axial and radial velocity, respectively

\(\overline{T}\) :

Temperature

\(\overline{p}\) :

Pressure

\(\overline{k}_p\) :

Permeability of porous medium

\(\overline{J}\) :

Microgyration parameter

\(\overline{u}_{HS}\) :

Helmholtz–Smoluchowski velocity

A :

Amplitude of body acceleration

\(Ke\) :

Electro-osmotic parameter

\(Ha\) :

Hartmann number

N :

Coupling number

\(m^2\) :

Micropolar spin parameter

Da :

Darcy number

Gr :

Grashof number

Pr :

Prandtl number

Br :

Brinkman number

Sz :

Joule heating parameter

\(Q_p,\, Q_d\) :

Volumetric flow rate in parent and daughter arteries, respectively

Nu :

Nusselt number

\(I_0,\, K_0\) :

Modified Bessel functions

\(\overline{\delta }_s\) :

Maximum height of constriction

\(\beta\) :

Half of the bifurcation angle

\(\overline{\rho }_{hnf}\) :

Density of hybrid nanofluid

\(\overline{\mu }_{hnf}\) :

Viscosity of hybrid nanofluid

\(\overline{\sigma }_{hnf}\) :

Electrical conductivity of hybrid nanofluid

\(\overline{\eta }\) :

Rotational viscosity

\(\overline{\gamma }\) :

Spin gradient viscosity

\(\overline{\nu }_{\overline{\theta }}\) :

Microrotation velocity

\(\overline{\psi }\) :

Electro-osmotic potential

\(\overline{\rho }_e\) :

Electric charge density

\(\epsilon\) :

Dielectric constant

\(\overline{\kappa }\) :

Debye–Hückel parameter

\(\overline{\lambda }_D\) :

Debye length

\(\overline{\zeta }_1,\, \overline{\zeta }_2\) :

Zeta potential on the outer and inner wall, respectively

\(\tau\) :

Shear stress

\(\lambda _p,\, \lambda _d\) :

Flow resistance in parent and daughter arteries, respectively

References

  1. S.I. Abdelsalam, K.S. Mekheimer, A. Zaher, Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: Aneurysmal/stenosed segment. Chin. J. Phys. 67, 314–329 (2020)

    Article  MathSciNet  Google Scholar 

  2. M. Abdulhameed, D. Vieru, R. Roslan, Magnetohydrodynamic electroosmotic flow of maxwell fluids with caputo-fabrizio derivatives through circular tubes. Comput Math Appl 74(10), 2503–2519 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ahmed, S. Nadeem, The study of (cu, tio2, al2o3) nanoparticles as antimicrobials of blood flow through diseased arteries. J. Mol. Liq. 216, 615–623 (2016)

    Article  Google Scholar 

  4. A. Ahmed, S. Nadeem, Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results in physics 7, 4130–4139 (2017)

    Article  ADS  Google Scholar 

  5. N.S. Akbar, A.W. Butt, Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall. J. Magn. Magn. Mater. 381, 285–291 (2015)

    Article  ADS  Google Scholar 

  6. N.S. Akbar, D. Tripathi, O.A. Bég, Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery. Euro Phys J Plus 132(7), 294 (2017)

    Article  Google Scholar 

  7. A. Ali, S. Saleem, S. Mumraiz, A. Saleem, M. Awais, D.K. Marwat, Investigation on tio2-cu/h2o hybrid nanofluid with slip conditions in mhd peristaltic flow of jeffrey material. J. Therm. Anal. Calorim. 143(3), 1985–1996 (2021)

    Article  Google Scholar 

  8. W. Boyd, Text-book of pathology; structure and function in diseases (Lea and Febiger, Philadelphia, 1961)

    Google Scholar 

  9. H.S. Chahregh, S. Dinarvand. Tio2-ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system. Int J Num Meth for Heat & Fluid Flow, 2020

  10. S. Chakravarty, P.K. Mandal, An analysis of pulsatile flow in a model aortic bifurcation. Int. J. Eng. Sci. 35(4), 409–422 (1997)

    Article  MATH  Google Scholar 

  11. S. Charm, G. Kurland, Viscometry of human blood for shear rates of 0–100,000 sec\(^{- 1}\). Nature 206(4984), 617–618 (1965)

    ADS  Google Scholar 

  12. P. Chaturani, V. Palanisamy, Microcontinuum model for pulsatile blood flow through a stenosed tube. Biorheology 26(4), 835–846 (1989)

    Article  Google Scholar 

  13. P. Chaturani, R. Ponnalagar Samy. A study of non-newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Biorheology, 22(6):521–531, 1985

  14. X. Chen, Y. Jian, Z. Xie, Z. Ding, Thermal transport of electromagnetohydrodynamic in a microtube with electrokinetic effect and interfacial slip. Colloids Surf., A 540, 194–206 (2018)

    Article  Google Scholar 

  15. S.U. Choi. Enhancing thermal conductivity of fluids with nanoparticles,. In Developments and applications of non-Newtonian flows, edited by Siginer DA, Wang HP, volume 36, pages 99–105, 1995

  16. R. Devanathan, S. Parvathamma, Flow of micropolar fluid through a tube with stenosis. Med. Biol. Eng. Compu. 21(4), 438–445 (1983)

    Article  MATH  Google Scholar 

  17. R. Ellahi, S. Rahman, S. Nadeem, N.S. Akbar, Influence of heat and mass transfer on micropolar fluid of blood flow through a tapered stenosed arteries with permeable walls. J. Comput. Theor. Nanosci. 11(4), 1156–1163 (2014)

    Article  Google Scholar 

  18. T. Elnaqeeb, N.A. Shah, K.S. Mekheimer, Hemodynamic characteristics of gold nanoparticle blood flow through a tapered stenosed vessel with variable nanofluid viscosity. BioNanoScience 9(2), 245–255 (2019)

    Article  Google Scholar 

  19. A.C. Eringen. Theory of micropolar fluids. J Math Mech, pages 1–18, 1966

  20. P.L. Farber, B. Hochman, F. Furtado, L.M. Ferreira, Electricity and colloidal stability: How charge distribution in the tissue can affects wound healing. Med. Hypotheses 82(2), 199–204 (2014)

    Article  Google Scholar 

  21. Y. Haik, V. Pai, C.-J. Chen, Apparent viscosity of human blood in a high static magnetic field. J. Magn. Magn. Mater. 225(1–2), 180–186 (2001)

    Article  ADS  Google Scholar 

  22. R.J. Hunter. Foundations of colloid science. Oxford University Press, 2001

  23. S. Ijaz, Z. Iqbal, E. Maraj, S. Nadeem, Investigation of cu-cuo/blood mediated transportation in stenosed artery with unique features for theoretical outcomes of hemodynamics. J. Mol. Liq. 254, 421–432 (2018)

    Article  Google Scholar 

  24. S. Ijaz, S. Nadeem, Biomedical theoretical investigation of blood mediated nanoparticles (ag-al2o3/blood) impact on hemodynamics of overlapped stenotic artery. J. Mol. Liq. 248, 809–821 (2017)

    Article  Google Scholar 

  25. A. Kolin. An electromagnetic flowmeter. principle of the method and its application to bloodflow measurements. Proceedings of the Society for Experimental Biology and Medicine, 35(1):53–56, 1936

  26. Q. Li, X. Wang, X. Lu, H. Tian, H. Jiang, G. Lv, D. Guo, C. Wu, B. Chen, The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials 30(27), 4708–4715 (2009)

    Article  Google Scholar 

  27. M. Lighthill, Physiological fluid dynamics: a survey. J. Fluid Mech. 52(3), 475–497 (1972)

    Article  ADS  MATH  Google Scholar 

  28. M.M.S. Lih. Transport phenomena in medicine and biology. Wiley, 1975

  29. R. Manchi, R. Ponalagusamy, Modeling of pulsatile emhd flow of au-blood in an inclined porous tapered atherosclerotic vessel under periodic body acceleration. Arch. Appl. Mech. 91, 3421–3447 (2021)

    Article  ADS  Google Scholar 

  30. J.H. Masliyah and S. Bhattacharjee. Electrokinetic and colloid transport phenomena. John Wiley & Sons, 2006

  31. K.S. Mekheimer, R. Abo-Elkhair, A. Moawad. Electrothermal transport via gold nanoparticles as antimicrobials of blood flow through an electro-osmosis artery with overlapping stenosis. Int J Fluid Mech Res, 47(2), 2020

  32. K.S. Mekheimer, T. Elnaqeeb, M. El Kot, F. Alghamdi, Simultaneous effect of magnetic field and metallic nanoparticles on a micropolar fluid through an overlapping stenotic artery: blood flow model. Physics Essays 29(2), 272–283 (2016)

    Article  ADS  Google Scholar 

  33. I.A. Mirza, M. Abdulhameed, D. Vieru, S. Shafie, Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel. Comput. Methods Programs Biomed. 137, 149–166 (2016)

    Article  Google Scholar 

  34. J. Misra, A. Sinha, G. Shit, Mathematical modeling of blood flow in a porous vessel having double stenoses in the presence of an external magnetic field. Int. J. Biomath. 4(02), 207–225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Padma, R. Ponalagusamy, R. Tamil Selvi. Mathematical modeling of electro hydrodynamic non-newtonian fluid flow through tapered arterial stenosis with periodic body acceleration and applied magnetic field. Appl Math Comput, 362:124453, 2019

  36. R. Ponalagusamy. Blood Flow Through Stenosed Tube. PhD thesis, IIT Bombay, India, 1986

  37. S. Priyadharshini, R. Ponalagusamy, An unsteady flow of magnetic nanoparticles as drug carrier suspended in micropolar fluid through a porous tapered arterial stenosis under non-uniform magnetic field and periodic body acceleration. Comput. Appl. Math. 37(4), 4259–4280 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. N. Rineesh, M. Neelakandan, S. Thomas, Applications of silver nanoparticles for medicinal purpose. JSM Nanotechnol Nanomedicine 6(1), 1–7 (2018)

    Google Scholar 

  39. I. Shahzadi and S. Nadeem. Inclined magnetic field analysis for metallic nanoparticles submerged in blood with convective boundary condition. J Mole Liquidsl, 230(2):61–73, 2017

  40. S. Shaw, R.S.R. Gorla, P. Murthy, C.-O. Ng, Pulsatile casson fluid flow through a stenosed bifurcated artery. Int. J. Fluid Mech. Res. 36(1), 43–63 (2009)

    Article  Google Scholar 

  41. S. Shaw, P. Murthy, P. Sibanda, Magnetic drug targeting in a permeable microvessel. Microvasc. Res. 85, 77–85 (2013)

    Article  Google Scholar 

  42. G. Shit, M. Roy, Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration. J Mech Med Biol 11(03), 643–661 (2011)

    Article  Google Scholar 

  43. G.C. Shit, S. Maiti, M. Roy, J. Misra, Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: a numerical study. Math. Comput. Simul. 166, 432–450 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Sinha, G. Shit, Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation. J. Magn. Magn. Mater. 378, 143–151 (2015)

    Article  ADS  Google Scholar 

  45. D. Srinivasacharya, G.M. Rao, Micropolar fluid flow through a stenosed bifurcated artery. Nonlinear Analysis: Modelling and Control 22(2), 147–159 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Srinivasacharya, M. Rao, Magnetic effects of pulsatile flow of micropolar fluid through a bifurcated artery. World J Model Sim 12(2), 147–160 (2016)

    MATH  Google Scholar 

  47. S. Uddin, M. Mohamad, M. Rahimi-Gorji, R. Roslan, I.M. Alarifi, Fractional electro-magneto transport of blood modeled with magnetic particles in cylindrical tube without singular kernel. Microsyst. Technol. 26(2), 405–414 (2020)

    Article  Google Scholar 

  48. B. Vasu, A. Dubey, O.A. Bég, R.S.R. Gorla, Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: non-newtonian pharmacodynamic simulation. Comput. Biol. Med. 126, 104025, (2020)

  49. R.L. Whitmore. Rheology of the Circulation. Pergamon, 1968

  50. D. Young, Effect of a time-dependent stenosis on flow through a tube. J Eng Ind 90(2), 248–254 (1968)

    Article  Google Scholar 

  51. L. Zain and Z. Ismail. Modelling of newtonian blood flow through a bifurcated artery with the presence of an overlapping stenosis. Malaysian J Fund Appl Sci Special Issue on Some Adv in Ind Appl Math, pages 304–309, 2017

  52. A. Zaman, N. Ali, A.A. Khan, Computational biomedical simulations of hybrid nanoparticles on unsteady blood hemodynamics in a stenotic artery. Math. Comput. Simul. 169, 117–132 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Zhao, S. Wang, S. Wei, Transient electro-osmotic flow of oldroyd-b fluids in a straight pipe of circular cross section. J. Nonnewton. Fluid Mech. 201, 135–139 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The first author Mr. Ramakrishna Manchi is thankful to the MHRD, the Government of India for the grant of a fellowship to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Manchi.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manchi, R., Ponalagusamy, R. Pulsatile Flow of EMHD Micropolar Hybrid Nanofluid in a Porous Bifurcated Artery With an Overlapping Stenosis in the Presence of Body Acceleration and Joule Heating. Braz J Phys 52, 52 (2022). https://doi.org/10.1007/s13538-022-01061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01061-3

Keywords

Navigation