Skip to main content
Log in

Effect of Gold Nanoparticles and Unwanted Residues on Raman Spectra of Graphene Sheets

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

A Correction to this article was published on 15 January 2019

This article has been updated

Abstract

We report the effect of gold nanoparticles (AuNPs) and unwanted sodium citrate residues (UnR) left after deposition of AuNPs by drop-casting method on the Raman spectra of graphene sheets (GS). The AuNPs solution was deposited on three different substrates: 5.0 wt% Yb3+-doped (Q5) phosphate glass, silica glass (S1), and Si/SiO2-300 nm (S2) substrates. For Q5 substrate, a slight increase in intensity of the G peak was observed, mostly for thinner layers, which can be attributed to a weak SERS effect shielded by UnR. The combination of the following aspects: a blue shift of the G band position, a slight increase in the FWHM (Full Width at Half Maximum), and a slight increase of the Raman intensities of both G and 2D bands in other GS without UnR supports the argument of shielded SERS effect. On the other hand, the effects of UnR on the S1 and S2 substrates produce a decrease on the Raman intensities of G and 2D bands, opposite to the effect produced by the AuNPs; this result was found more intense for the S2 substrate in relation to S1. This is possibly caused by the greater amount of UnR accumulated on the Si/SiO2 substrate, due to its higher hydrophilicity in relation to other samples. Additional Raman measurements reveal that the Raman intensity of GS in all substrates is unaffected by the presence of a possible humidity on GS, revealing the effect of UnR. Hence, it is vital to understand how residues influence the salient features of GS/AuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 15 January 2019

    In the original article Chiara Valsecchi���s last name was spelled incorrectly. It is correct as reflected here.

References

  1. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)

    Article  ADS  Google Scholar 

  2. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  3. C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A.P. Rocha-Santos, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)

    Article  Google Scholar 

  4. M. Hu, Z. Yao, X. Wang, Graphene-based nanomaterials for catalysis. Ind. Eng. Chem. Res. 56, 3477–3502 (2017)

    Article  Google Scholar 

  5. M. Saquib, A. Halder, Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide. J. Nanopart. Res. 20, 46 (2018)

    Article  ADS  Google Scholar 

  6. M.D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley, G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely, Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005)

    Article  ADS  Google Scholar 

  7. J. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, M. Haruta, Propene epoxidation with dioxygen catalyzed by gold clusters. Angewandte Chemie - International Edition 48, 7862–7866 (2009)

    Article  Google Scholar 

  8. M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F.G. Johnson, R.M. Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008)

    Article  ADS  Google Scholar 

  9. Y. Zhao, Y. Zhu, Graphene-based hybrid films for plasmonic sensing. Nanoscale 7, 14561–14576 (2015)

    Article  ADS  Google Scholar 

  10. J. Zhu, G. Zeng, F. Nie, X. Xu, S. Chen, Q. Han, X. Wang, Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system. Nanoscale 2, 988–994 (2010)

    Article  ADS  Google Scholar 

  11. L. Shang, S. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401–418 (2011)

    Article  Google Scholar 

  12. F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, X. Zhang, Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 83, 1193–1196 (2011)

    Article  Google Scholar 

  13. Y.V. Stebunov, O.A. Aftenieva, A.V. Arsenin, V.S. Volkov, Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Appl. Mater. Interfaces 7, 21727–21734 (2015)

    Article  Google Scholar 

  14. I. Khalil, N. Julkapli, W. Yehye, W. Basirun, S. Bhargava, Graphene–gold nanoparticles hybrid—synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials 9, 406 (2016)

    Article  ADS  Google Scholar 

  15. A.M. Schwartzberg, C.D. Grant, A. Wolcott, C.E. Talley, T.R. Huser, R. Bogomolni, J.Z. Zhang, Unique gold nanoparticle aggregates as a highly active surface-enhanced raman scattering substrate. J. Phys. Chem. B 108, 19191–19197 (2004)

    Article  Google Scholar 

  16. J. Lee, S. Shim, B. Kim, H.S. Shin, Surface-enhanced raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chem. Eur. J. 17, 2381–2387 (2011)

    Article  Google Scholar 

  17. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009)

    Article  ADS  Google Scholar 

  18. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, R.M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011)

    Article  ADS  Google Scholar 

  19. E. Koo, S.Y. Ju, Role of residual polymer on chemical vapor grown graphene by Raman spectroscopy. Carbon 86, 318–324 (2015)

    Article  Google Scholar 

  20. B.B. KANTAR, M. ÖZTÜRK, H. ÇETİN, The effects of lithographic residues and humidity on graphene field effect devices. Bull. Mater. Sci. 40, 239–245 (2017)

    Article  Google Scholar 

  21. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 11, 55 (1951)

    Article  Google Scholar 

  22. D. Grasseschi, R.A. Ando, H.E. Toma, V.M. Zamarion, Unraveling the nature of Turkevich gold nanoparticles: the unexpected role of the dicarboxyketone species. RSC Adv. 5, 5716–5724 (2015)

    Article  Google Scholar 

  23. L.E.G. Armas, G.T. Landi, M.F.G. Huila, A. Champi, M. Pojar, A.C. Seabra, A.D. Santos, K. Araki, H.E. Toma, Graphene modification with gold nanoparticles using the gas aggregation technique. Diam. Relat. Mater. 23, 18–22 (2012)

    Article  ADS  Google Scholar 

  24. Z. Shen, J. Li, M. Yi, X. Zhang, S. Ma, Preparation of graphene by jet cavitation. Nanotechnology 22, 365306 (2011)

    Article  Google Scholar 

  25. W.X. Wang, S.H. Liang, T. Yu, D.H. Li, Y.B. Li, X.F. Han, Journal of Applied Physics 109 (2011)

  26. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009)

    Article  ADS  Google Scholar 

  27. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7, 2645–2649 (2007)

    Article  ADS  Google Scholar 

  28. J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5, 608–612 (2011)

    Article  Google Scholar 

  29. J.S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, M.S. Dresselhaus, <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:msup><mml:mrow><mml:mi>G</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math> band Raman spectra of single, double and triple layer graphene. Carbon 47, 1303–1310 (2009)

  30. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  31. K. Xu, P. Cao, J.R. Heath, Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329, 1188–1191 (2010)

    Article  ADS  Google Scholar 

  32. H. Komurasaki, T. Tsukamoto, K. Yamazaki, T. Ogino, Layered structures of interfacial water and their effects on raman spectra in graphene-on-sapphire systems. J. Phys. Chem. C 116, 10084–10089 (2012)

    Article  Google Scholar 

  33. J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y. Shi, P.M. Ajayan, N.A. Koratkar, Wetting transparency of graphene. Nat. Mater. 11, 217–222 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian Agency CNPq for the partial financial support through the Project No. 460733/2014–1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis E. G. Armas or Luis T. Quispe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armas, L.E.G., Zamarion, V.M., Quispe, L.T. et al. Effect of Gold Nanoparticles and Unwanted Residues on Raman Spectra of Graphene Sheets. Braz J Phys 48, 477–484 (2018). https://doi.org/10.1007/s13538-018-0596-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0596-2

Keywords

Navigation