Skip to main content
Log in

Bounds on the Slope and Curvature of Isgur-Wise Function in a QCD-Inspired Quark Model

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The quantum chromodynamics-inspired potential model pursued by us earlier has been recently modified to incorporate an additional factor ‘c’ in the linear cum Coulomb potential. While it felicitates the inclusion of standard confinement parameter b = 0.183 GeV2 unlike in previous work, it still falls short of explaining the Isgur-Wise function for the B mesons without ad hoc adjustment of the strong coupling constant. In this work, we determine the factor ‘c’ from the experimental values of decay constants and masses and show that the reality constraint on ‘c’ yields bounds on the strong coupling constant as well as on slope and curvature of Isgur-Wise function allowing more flexibility to the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Neubert, Phys. Rep. 245, 259 (1994)

    Article  ADS  Google Scholar 

  2. N. Isgur, M.B. Wise, Phys. Lett. B 232, 113 (1989)

    Article  ADS  Google Scholar 

  3. B. Holdom, M. Sutherland, J. Mureika, Phys. Rev. D 49, 2359 (1994)

    Article  ADS  Google Scholar 

  4. M.A. Ivanov, V.E. Lyubouvitskij, L.G. Körner, P. Kroll, Phys. Rev. D 56, 348 (1997)

    Article  ADS  Google Scholar 

  5. B. König, J.G. Körner, M. Krämer, P. Kroll, Phys. Rev. 56, 4282 (1997)

    Google Scholar 

  6. F.E. Close, A. Wambach, Nucl. Phys. B 412, 169 (1994)

    Article  ADS  Google Scholar 

  7. H.W. Huang, Phys. Rev. D 56, 1579 (1979)

    Article  ADS  Google Scholar 

  8. D. Melikhov, Phys. Rev. D 53, 2460 (1996)

    Article  ADS  Google Scholar 

  9. M.R. Ahmady, R.R. Mendel, J.D. Talman, Phys. Rev. D 52, 254 (1995)

    Article  ADS  Google Scholar 

  10. M.G. Olsson, S. Veseli, Fermilab-Pub-96/418-T (1997)

  11. M.G. Olsson, S. Veseli, Phys. Rev. D 51, 2224 (1995)

    Article  ADS  Google Scholar 

  12. A. Le Yaouanc, L. Oliver, J.C. Raynal, Phys. Rev. D 69, 094022 (2004)

    Article  Google Scholar 

  13. Y.B. Dai, C.S. Huang, M.Q. Huang, C. Liu, Phys. Lett. B 387, 379 (1996)

    Article  ADS  Google Scholar 

  14. M. Sadzikowski, K. Zalewski, Z. Phys. C 59, 667 (1993)

    Article  ADS  Google Scholar 

  15. E. Jenkins, A. Manohar, M.B. Wise, Nucl. Phys. B 396, 38 (1996)

    Article  ADS  Google Scholar 

  16. D.K. Choudhury, P. Das, D.D. Goswami, J.N. Sharma, Pramana J. Phys. 44, 519 (1995)

    Article  ADS  Google Scholar 

  17. D.K. Choudhury, N.S. Bordoloi, IJMPA 15(23), 3667 (2000)

    Google Scholar 

  18. D.K. Choudhury, N.S. Bordoloi, MPLA 17(29), 1909 (2002)

    Article  ADS  Google Scholar 

  19. D.K. Choudhury, N.S. Bordoloi, MPLA 24(6), 443 (2009)

    Article  ADS  MATH  Google Scholar 

  20. A. Ghatak, S. Lokanathan, in Quantum Mechanics (McGraw Hill, New York, 1997), p. 291

    Google Scholar 

  21. E. Eichten, Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  22. J.J. Sakurai, in Advanced Quantum Mechanics (Addison-Wesley, Boston, 1986), p. 128

    Google Scholar 

  23. C. Itzykson, J. Zuber, in Quantum Field Theory, (International Student Edition, McGraw Hill, Singapore, 1986), p. 79

    Google Scholar 

  24. V.O. Galkin, A. Yu Mishurov, R.N. Faustov, Sov. J. Nucl. Phys. 53, 1026 (1991)

    Google Scholar 

  25. D.E. Groom et al., Particle Data Group. Eur. Phys. J. C 15, 1 (2000)

    Google Scholar 

  26. Y. Schröder, Phys. Lett. B 447, 321 (1999)

    Article  ADS  Google Scholar 

  27. Y. Schröder, Nucl. Phys. Proc. Suppl. 86, 525 (2000)

    Article  ADS  Google Scholar 

  28. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Lett. B 365, 319 (1996)

    Article  ADS  Google Scholar 

  29. J.L. Rosner, Phys. Rev. D 44, 3732 (1990)

    Article  ADS  Google Scholar 

  30. T. Mannel, W. Roberts, Z. Ryzak, Phys. Rev. D 44, R18 (1991)

    Article  ADS  Google Scholar 

  31. T. Mannel, W. Roberts, Z. Ryzak, Phys. Lett. B 255, 593 (1993)

    ADS  Google Scholar 

  32. M. Neubert, Phys. Lett. B 264, 455 (1991)

    Article  ADS  Google Scholar 

  33. F. Jugeau, A. Le Yaouanc, L. Oliver, J.C. Raynal; Phys. Rev. D 70, 114020 (2004)

    Article  ADS  Google Scholar 

  34. F.E. Close, A. Wambach, RAL-94-041, OUTP-94 09P (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Jyoti Hazarika.

Appendix

Appendix

X 1, X 2 and X 3 are evaluated as

$$ \begin{array}{rll}\label{eq26} X_{1}&=&64\pi c^{2}A_{0}^{2}a_{0}^{3}+64+\mu^{2}b^{2}a_{0}^{6}\\ &&\times\left(8-2\epsilon\right)\left(7-2\epsilon\right)\left(6-2\epsilon\right)\left(5-2\epsilon\right)\\ &&+128cA_{0}\sqrt{\pi a_{0}^{3}} \! - \! 16cA_{0}\mu b\sqrt{\pi a_{0}^{9}}\left(6 \! - \! 2\epsilon\right)\left(5 \! - \! 2\epsilon\right)\\ &&-16\mu ba_{0}^{3}\left(6-2\epsilon\right)\left(5-2\epsilon\right), \end{array} $$
(26)
$$ \begin{array}{rll} \label{eq27} X_{2}&=&64\pi c^{2}A_{0}^{2}a_{0}^{3}+64+\mu^{2}b^{2}a_{0}^{6}\\ &&\times\left(6-2\epsilon\right)\left(5-2\epsilon\right)\left(4-2\epsilon\right)\left(3-2\epsilon\right)\\ &&+128cA_{0}\sqrt{\pi a_{0}^{3}} \! - \! 16cA_{0}\mu b\sqrt{\pi a_{0}^{9}}\left(4 \! - \! 2\epsilon\right)\left(3 \! - \! 2\epsilon\right)\\ &&-16\mu ba_{0}^{3}\left(4-2\epsilon\right)\left(3-2\epsilon\right), \end{array} $$
(27)

and

$$ \begin{array}{rll}\label{eq28} X_{3}&=&64\pi c^{2}A_{0}^{2}a_{0}^{3}+64+\mu^{2}b^{2}a_{0}^{6}\\ &&\times\left(10-2\epsilon\right)\left(9-2\epsilon\right)\left(8-2\epsilon\right)\left(7-2\epsilon\right)\\ &&+128cA_{0}\sqrt{\pi a_{0}^{3}} \! - \! 16cA_{0}\mu b\sqrt{\pi a_{0}^{9}}\left(8 \! - \! 2\epsilon\right)\left(7 \! - \! 2\epsilon\right)\\ &&-16\mu ba_{0}^{3}\left(8-2\epsilon\right)\left(7-2\epsilon\right). \end{array} $$
(28)

Not only the above expressions but also all the integrals in the analysis are evaluated with the help of Gamma function, given by:

$$\label{eq29} \frac{\Gamma\left(n+1\right)}{\alpha^{n+1}}=\int_{0}^{+\infty} r^{n}e^{-\alpha r} dr. $$
(29)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazarika, B.J., Choudhury, D.K. Bounds on the Slope and Curvature of Isgur-Wise Function in a QCD-Inspired Quark Model. Braz J Phys 41, 159–166 (2011). https://doi.org/10.1007/s13538-011-0021-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-011-0021-6

Keywords

PACS

Navigation