Skip to main content
Log in

Fitting Cosmological Data to the Function q(z) from GR Theory: Modified Chaplygin Gas

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the Friedmann cosmology, the deceleration of the expansion q plays a fundamental role. We derive the deceleration as a function of redshift q(z) in two scenarios: ΛCDM model and modified Chaplygin gas (MCG) model. The function for the MCG model is then fitted to the cosmological data in order to obtain the cosmological parameters that minimize χ 2. We use the Fisher matrix to construct the covariance matrix of our parameters and reconstruct the q(z) function. We use Supernovae Ia, WMAP5, and BAO measurements to obtain the observational constraints. We determined the present acceleration as q 0 = − 0.65 ±0.19 for the MCG model using the Union2 dataset of SNeIa, BAO, and CMB and q 0 = − 0.67 ±0.17 for the Constitution dataset, BAO and CMB. The transition redshift from deceleration to acceleration was found to be around 0.80 for both datasets. We have also determined the dark energy parameter for the MCG model: Ω X0 = 0.81 ±0.03 for the Union2 dataset and Ω X0 = 0.83 ±0.03 using the Constitution dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Larson, et al., arXiv:1001.4635 (2010)

  2. A.G. Riess, et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  3. A.G. Riess, et al., Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  4. C. Shapiro, M.S. Turner, Astrophys. J. 649, 563 (2006)

    Article  ADS  Google Scholar 

  5. S. Nesseris, L. Perivolaropoulos, JCAP 7, 025 (2007)

    Google Scholar 

  6. J.V. Cunha, Phys. Rev. D 79, 047301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. E.E.O. Ishida, R.R.R. Reis, A.V. Toribio, I. Waga, Astropart. Phys. 28, 547 (2008)

    Article  ADS  Google Scholar 

  8. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  9. Z. Li, P. Wu, H.W. Yu, JCAP 9, 017 (2009)

    ADS  Google Scholar 

  10. H.B. Benaoum (2002). hep-th/0205140

  11. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quant. Grav. 21, 5609. arXiv:gr-qc/0411015 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Bouhmadi-Lopez, et al., Phys. Rev. D 81, 063504. arXiv:0910.5134 (2010)

    Article  ADS  Google Scholar 

  13. P. Thakur, S. Ghose, B.C. Paul, Mon. Not. R. Astron. Soc. 397, 1935 (2009)

    Article  ADS  Google Scholar 

  14. D.-J. Liu, X.-Z. Li, Chin. Phys. Lett. 22, 1600 (2005)

    Google Scholar 

  15. J. Lu et al., Phys. Lett. B 662, 87 (2008)

    Article  ADS  Google Scholar 

  16. A. Kamenshchik, U. Moschela, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  17. N. Bilic, G.B. Tupper, R.D. Viollier, Phys. Lett. B 535, 17 (2002)

    Article  ADS  MATH  Google Scholar 

  18. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002); Phys. Rev. D 67, 063003 (2003)

    Google Scholar 

  19. M.C. Bento, O. Bertolami, A.A. Sen, Gen. Rel. Grav. 35, 2063 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. M.L. Bedran, V. Soares, M.E. Araujo, Phys. Lett. B 659, 462 (2008)

    ADS  Google Scholar 

  21. F.C. Santos, M.L. Bedran, V. Soares, Phys. Lett. B 646, 215 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Makler, S.Q. de Oliveira, I. Waga, Phys. Lett. B 555, 1 (2003)

    Article  ADS  Google Scholar 

  23. R. Amanullah, et al., ApJ 716, 712 (2010)

    Article  ADS  Google Scholar 

  24. R. Kessler, et al., ApJ 185, 32 (2009)

    Article  Google Scholar 

  25. M. Kowalski, et al., Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

  26. M. Hicken, Astrophys. J. 700, 1097 (2009)

    Article  ADS  Google Scholar 

  27. D.J. Eisenstein, et al., [SDSS Collaboration], Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  28. E. Komatsu, et al., arXiv:1001.4538 (2010)

  29. U. Alam, et al., Mon. Not. R. Astron. Soc. 354, 275 (2004)

    Article  ADS  Google Scholar 

  30. A. Heavens, arxiv:0906.0664v2 (2009)

  31. M.P. Lima, S.D.P. Vitenti, M.J. Rebouças, Phys. Lett. B 668, 83 (2008)

    Article  ADS  Google Scholar 

  32. W.J. Percival, et al., Mon. Not. R. Astron. Soc 381, 1053. arXiv:0705.3323 (2007)

    Article  ADS  Google Scholar 

  33. B.A. Reid, Mon. Not. R. Astron. Soc 404, 60 arXiv:0907.1659 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.M.V.T. would like to thank at project visiting professor of the Federal University of Juiz de Fora—Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan M. Velasquez-Toribio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasquez-Toribio, A.M., Bedran, M.L. Fitting Cosmological Data to the Function q(z) from GR Theory: Modified Chaplygin Gas. Braz J Phys 41, 59–65 (2011). https://doi.org/10.1007/s13538-011-0012-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-011-0012-7

Keywords

Navigation