Skip to main content
Log in

An inversion of the conical Radon transform arising in the Compton camera with helical movement

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Since the Compton camera was first introduced, various types of conical Radon transforms have been examined. Here, we derive the inversion formula for the conical Radon transform, where the cone of integration moves along a curve in three-dimensional space such as a helix. Along this three-dimensional curve, a detailed inversion formula for helical movement will be treated for Compton imaging in this paper. The inversion formula includes Hilbert transform and Radon transform. For the inversion of Compton imaging with helical movement, it is necessary to invert Hilbert transform with respect to the inner product between the vertex and the central axis of the cone of the Compton camera. However, the inner product function is not monotone. Thus, we should replace the Hilbert transform by the Riemann–Stieltjes integral over a certain monotone function related with the inner product function. We represent the Riemann–Stieltjes integral as a conventional Riemann integral over a countable union of disjoint intervals, whose end points can be computed using the Newton method. For the inversion of Radon transform, three dimensional filtered backprojection is used. For the numerical implementation, we analytically compute the Hilbert transform and Radon transform of the characteristic function of finite balls. Numerical test is given, when the density function is given by a characteristic function of a ball or three overlapping balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allmaras M, Darrow DP, Hristova Y, Kanschat G, Kuchment P. Detecting small low emission radiating sources. Inverse Probl Imaging. 2013;7(1):47–79.

    Article  MathSciNet  MATH  Google Scholar 

  2. Basko R, Zeng GL, Gullberg GT. Application of spherical harmonics to image reconstruction for the Compton camera. Phys Med Biol. 1998;43(4):887–94.

    Article  Google Scholar 

  3. Cree MJ, Bones PJ. Towards direct reconstruction from a gamma camera based on Compton scattering. IEEE Trans Med Imaging. 1994;13(2):398–409.

    Article  Google Scholar 

  4. Gouia-Zarrad R. Analytical reconstruction formula for $n$-dimensional conical Radon transform. Comput Math Appl. 2014;68(9):1016–23.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gouia-Zarrad R, Ambartsoumian G. Exact inversion of the conical Radon transform with a fixed opening angle. Inverse Probl. 2014;30(4):045007.

    Article  MathSciNet  MATH  Google Scholar 

  6. Haltmeier M. Exact reconstruction formulas for a Radon transform over cones. Inverse Probl. 2014;30(3):035001.

    Article  MathSciNet  MATH  Google Scholar 

  7. Helgason S. The Radon transform. Progress in mathematics. Boston: Birkhäuser; 1999.

    Book  MATH  Google Scholar 

  8. Jung C, Moon S. Inversion formulas for cone transforms arising in application of Compton cameras. Inverse Probl. 2015;31(1):015006.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jung C, Moon S. Exact inversion of the cone transform arising in an application of a Compton camera consisting of line detectors. SIAM J Imaging Sci. 2016;9(2):520–36.

    Article  MathSciNet  MATH  Google Scholar 

  10. Katsevich A. Analysis of an exact inversion algorithm for spiral cone-beam CT. Phys Med Biol. 2002;47(15):2583.

    Article  Google Scholar 

  11. Katsevich A. Theoretically exact filtered backprojection-type inversion algorithm for spiral CT. SIAM J Appl Math. 2002;62(6):2012–26.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuchment P, Terzioglu F. Inversion of weighted divergent beam and cone transforms. Am Inst Math Sci. 2017;11(6):1071–90.

    MathSciNet  MATH  Google Scholar 

  13. Kuchment P, Terzioglu F. Three-dimensional image reconstruction from Compton camera data. SIAM J Imaging Sci. 2016;9(4):1708–25.

    Article  MathSciNet  MATH  Google Scholar 

  14. Marr RB, Chen CN, Lauterbur PC. On two approaches to 3D reconstrunction in NMR zeugmatography. In: Herman GT, Natterer F, editors. Mathematical aspects of computed tomography. Lecture notes in medical informatics, vol. 8. Berlin: Springer; 1981. p. 225–40.

    Google Scholar 

  15. Maxim V, Frandeş M, Prost R. Analytical inversion of the Compton transform using the full set of available projections. Inverse Probl. 2009;25(9):095001.

    Article  MathSciNet  MATH  Google Scholar 

  16. Moon S. On the determination of a function from its conical Radon transform with a fixed central axis. SIAM J Math Anal. 2016;48(3):1833–47.

    Article  MathSciNet  MATH  Google Scholar 

  17. Moon S. Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a compton camera. Inverse Probl. 2017;33(6):065002.

    Article  MathSciNet  MATH  Google Scholar 

  18. Natterer F. The mathematics of computerized tomography. Classics in applied mathematics. Philadelphia: Society for Industrial and Applied Mathematics; 2001.

    Book  MATH  Google Scholar 

  19. Natterer F, Wübbeling F. Mathematical methods in image reconstruction. SIAM monographs on mathematical modeling and computation. Philadelphia: Society for Industrial and Applied Mathematics; 2001.

    MATH  Google Scholar 

  20. Nguyen MK, Truong TT. The development of Radon transforms associated to compton scatter imaging concepts. Eurasian J Math Comput Appl. 2018;1(1):hal-01759845.

    Google Scholar 

  21. Nguyen MK, Truong TT, Grangeat P. Radon transforms on a class of cones with fixed axis direction. J Phys A Math Gen. 2005;38(37):8003–15.

    Article  MathSciNet  MATH  Google Scholar 

  22. Rigaud G, Hahn BN. 3D compton scattering imaging and contour reconstruction for a class of Radon transforms. Inverse Probl. 2018;34:075004.

    Article  MathSciNet  Google Scholar 

  23. Schiefeneder D, Haltmeier M. The Radon transform over cones with vertices on the sphere and orthogonal axes. SIAM J Appl Math. 2017;77(4):1335–51.

    Article  MathSciNet  MATH  Google Scholar 

  24. Singh M. An electronically collimated gamma camera for single photon emission computed tomography. Part I: theoretical considerations and design criteria. Med Phys. 1983;10(37):421–7.

    Article  Google Scholar 

  25. Smith B. Reconstruction methods and completeness conditions for two Compton data models. J Opt Soc Am A. 2005;22(3):445–59.

    Article  Google Scholar 

  26. Smith B. Computer simulations to demonstrate new inversion methods for Compton camera data. Opt Eng. 2012;51(05):053203.

    Article  Google Scholar 

  27. Smith B. A new Compton camera imaging model to mitigate the finite spatial resolution of detectors and new camera designs for implementation. Technologies. 2015;3(4):219–37.

    Article  Google Scholar 

  28. Terzioglu F. Some inversion formulas for the cone transform. Inverse Probl. 2015;31(11):115010.

    Article  MathSciNet  MATH  Google Scholar 

  29. Terzioglu F. Some analytic properties of the cone transform. Inverse Probl. 2019;35:034002.

    Article  MathSciNet  MATH  Google Scholar 

  30. Terzioglu F, Kuchment P, Kunyansky L. Compton camera imaging and the cone transform: a brief overview. Inverse Probl. 2018;34:054002.

    Article  MATH  MathSciNet  Google Scholar 

  31. Todd RW, Nightingale JM, Everett DB. A proposed gamma camera. Nature. 1974;251(6):132–4.

    Article  Google Scholar 

  32. Truong TT, Nguyen MK, Zaidi H. The mathematical foundation of 3D Compton scatter emission imaging. Int J Biomed Imaging. 2007;2007:92780.

    Article  Google Scholar 

  33. Zou Y, Pan X. An extended data function and its generalized backprojection for image reconstruction in helical cone-beam CT. Phys Med Biol. 2004;49(22):N383.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF-2017R1A2B4004943).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiwoon Kwon.

Ethics declarations

Conflict of interest

Kwon K. declares that he has no conflict of interest in relation to the work in this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, K. An inversion of the conical Radon transform arising in the Compton camera with helical movement. Biomed. Eng. Lett. 9, 233–243 (2019). https://doi.org/10.1007/s13534-019-00106-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-019-00106-y

Keywords

Navigation