Skip to main content
Log in

Effect of chronic chlorpyrifos exposure on diaphragmatic muscle contractility and MHC isoforms in adult rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Object

Chlorpyrifos (CPF) is an organophosphate insecticide widely used in crop applications. It exerts its toxicity by inhibiting acetylcholinesterase (AChE) at cholinergic synapses. This study aims to investigate the impact of repeated dietary exposure to CPF during adulthood on the contractile performance of the diaphragm and hormonal regulation in male rats.

Methods

Three groups of 10 Sprague–Dawley rats were exposed daily to a diet mixed either with a vehicle (control group), a low dose of CPF (1 mg/kg/day; CPF1 group), or a higher dose of CPF (5 mg/kg/day, CPF5 group), for 6 consecutive weeks.

Results

CPF exposure at both doses increased the twitch tension, time to peak tension, half-relaxation time, and fatigability index of the diaphragm. The myofibrillar protein content was not affected in CPF1 group but increased in CPF5 group compared to controls. Alterations in the myosin heavy chain (MHC) isoforms expression were observed in CPF1 group with increased expression of fast-twitch MHC IIa isoform without any significant modifications in the expression of the different MHC isoforms in CPF5 group. Independent of the used doses, CPF exposure induced a decrease in the testosterone level and an increase in the serum corticosterone and growth hormone levels.

Conclusion

Chronic exposure of adult male rats to CPF is associated with increased diaphragm contractile performance and fatigability which could be related to perturbations in anabolic and catabolic hormonal balance, and/or possible modification in the excitation–contraction coupling mechanism. This finding provides a deeper insight into the respiratory diaphragm muscle dysfunction associated with long-term dietary CPF exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uner N, Oruç E, Sevgiler Y (2006) Neurotoxicity evaluation of the organofluorine pesticide etoxazole in the brain of Oreochromis niloticus. Drug Chem Toxicol 29(2):157–165. https://doi.org/10.1080/01480540600561403

    Article  CAS  PubMed  Google Scholar 

  2. Bjørling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 7:50. https://doi.org/10.1186/1476-069X-7-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. - O. US EPA (2019), Pesticides Industry Sales and Usage 2006 and 2007 Market Estimates, https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2006-and-2007-market-estimates, accessed February 19, 2019

  4. Casida JE, Quistad GB (2004) Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 17(8):983–998. https://doi.org/10.1021/tx0499259

    Article  CAS  PubMed  Google Scholar 

  5. Sudakin DL, Power LE (2007) Organophosphate exposures in the United States: a longitudinal analysis of incidents reported to poison centers. J Toxicol Environ Health A 70(2):141–147. https://doi.org/10.1080/15287390600755224

    Article  CAS  PubMed  Google Scholar 

  6. Eddleston M, Phillips MR (2004) Self poisoning with pesticides. BMJ 328(7430):42–44. https://doi.org/10.1136/bmj.328.7430.42

    Article  PubMed  PubMed Central  Google Scholar 

  7. El-Nahhal Y, El-Nahhal I (2021) Cardiotoxicity of some pesticides and their amelioration. Environ Sci Pollut Res Int 28(33):44726–44754. https://doi.org/10.1007/s11356-021-14999-9

    Article  CAS  PubMed  Google Scholar 

  8. El-Nahhal Y, Lubbad R, Al-Agha MR (2020) Toxicity evaluation of chlorpyrifos and diuron below maximum residue limits in rabbits. J Toxicol Environ Health Sci 12:177–190. https://doi.org/10.1007/s13530-020-00015-z

    Article  Google Scholar 

  9. El-Nahhal Y (2018) Toxicity of some aquatic pollutants to fish. Environ Monit Assess 190:449. https://doi.org/10.1007/s10661-018-6830-0

    Article  CAS  PubMed  Google Scholar 

  10. El-Nahhal Y (2018) Successful management of carbamate poisoning among children: case report from gaza strip. Occupat Diseases Environ Med 6:95–106. https://doi.org/10.4236/odem.2018.63008

    Article  Google Scholar 

  11. Muñoz-Quezada MT, Lucero BA, Iglesias VP et al (2016) Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: a review. Int J Occup Environ Health 22(1):68–79. https://doi.org/10.1080/10773525.2015.1123848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pilkington A, Buchanan D, Jamal GA et al (2001) An epidemiological study of the relations between exposure to organophosphate pesticides and indices of chronic peripheral neuropathy and neuropsychological abnormalities in sheep farmers and dippers. Occup Environ Med 58(11):702–710. https://doi.org/10.1136/oem.58.11.702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eaton DL, Daroff RB, Autrup H et al (2008) Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol 38(Suppl 2):1–125. https://doi.org/10.1080/10408440802272158

    Article  CAS  PubMed  Google Scholar 

  14. Barr DB, Angerer J (2006) Potential uses of biomonitoring data: a case study using the organophosphorus pesticides chlorpyrifos and malathion. Environ Health Perspect 114(11):1763–1769. https://doi.org/10.1289/ehp.9062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chlorpyrifos; End-Use Products Cancellation Order, https://www.federalregister.gov/documents/2001/09/12/01-22756/chlorpyrifos-end-use-products-cancellation-order, (accessed April 19, 2017)

  16. Chlorpyrifos Market: Global Industry Analysis and Forecast 2017 - 2025, https://www.persistencemarketresearch.com/market-research/chlorpyrifos-market.asp, (accessed March 31, 2019)

  17. Ismail M, Khan QM, Ali R, Ali T, Mobeen A (2014) Genotoxicity of chlorpyrifos in freshwater fish Labeo rohita using alkaline single-cell gel electrophoresis (Comet) assay. Drug Chem Toxicol 37(4):466–471. https://doi.org/10.3109/01480545.2014.887093

    Article  CAS  PubMed  Google Scholar 

  18. Tiwari RK, Singh S, Pandey RS (2019) Assessment of the acute toxicity of chlorpyrifos and cypermethrin to Heteropneustes fossilis and their impact on acetylcholinesterase activity. Drug Chem Toxicol 42(5):463–470. https://doi.org/10.1080/01480545.2017.1410171

    Article  CAS  PubMed  Google Scholar 

  19. Padilla S, Marshall RS, Hunter DL et al (2005) Neurochemical effects of chronic dietary and repeated high-level acute exposure to chlorpyrifos in rats. Toxicol Sci 88(1):161–171. https://doi.org/10.1093/toxsci/kfi274

    Article  CAS  PubMed  Google Scholar 

  20. Gordon CJ, Padnos BK (2002) Dietary exposure to chlorpyrifos alters core temperature in the rat. Toxicology 177(2–3):215–226. https://doi.org/10.1016/s0300-483x(02)00227-5

    Article  CAS  PubMed  Google Scholar 

  21. Moser VC, Phillips PM, McDaniel KL, Marshall RS, Hunter DL, Padilla S (2005) Neurobehavioral effects of chronic dietary and repeated high-level spike exposure to chlorpyrifos in rats. Toxicol Sci 86(2):375–386. https://doi.org/10.1093/toxsci/kfi199

    Article  CAS  PubMed  Google Scholar 

  22. López-Granero C, Cardona D, Giménez E et al (2013) Chronic dietary exposure to chlorpyrifos causes behavioral impairments, low activity of brain membrane-bound acetylcholinesterase, and increased brain acetylcholinesterase-R mRNA. Toxicology 308:41–49. https://doi.org/10.1016/j.tox.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  23. Venkatesh S, Ramachandran A, Zachariah A, Oommen A (2009) Mitochondrial ATP synthase inhibition and nitric oxide are involved in muscle weakness that occurs in acute exposure of rats to monocrotophos. Toxicol Mech Methods 19(3):239–245. https://doi.org/10.1080/15376510802455354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adams GK 3rd, Yamamura HI, O’Leary JF (1976) Recovery of central respiratory function following anticholinesterase intoxication. Eur J Pharmacol 38(1):101–112. https://doi.org/10.1016/0014-2999(76)90206-5

    Article  CAS  PubMed  Google Scholar 

  25. Hallal N, El Khayat El Sabbouri H, Salami A et al (2019) Impacts of prolonged chlorpyrifos exposure on locomotion and slow-and fast- twitch skeletal muscles contractility in rats. Toxicol Rep. https://doi.org/10.1016/j.toxrep.2019.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Blaquière GE, Williams FM, Blain PG, Kelly SS (1998) A comparison of the electrophysiological effects of two organophosphates, mipafox and ecothiopate, on mouse limb muscles. Toxicol Appl Pharmacol 150(2):350–360. https://doi.org/10.1006/taap.1998.8432

    Article  PubMed  Google Scholar 

  27. Polla B, D’Antona G, Bottinelli R, Reggiani C (2004) Respiratory muscle fibres: specialisation and plasticity. Thorax 59(9):808–817. https://doi.org/10.1136/thx.2003.009894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ivanović SR, Dimitrijević B, Ćupić V et al (2016) Downregulation of nicotinic and muscarinic receptor function in rats after subchronic exposure to diazinon. Toxicol Rep 3:523–530. https://doi.org/10.1016/j.toxrep.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santos RP, Cavaliere MJ, Puga FR, Narciso ES, Pelegrino JR, Calore EE (2002) Protective effect of early and late administration of pralidoxime against organophosphate muscle necrosis. Ecotoxicol Environ Saf 53(1):48–51. https://doi.org/10.1006/eesa.2001.2138

    Article  CAS  PubMed  Google Scholar 

  30. Darwiche W, Gay-Quéheillard J, Delanaud S et al (2018) Impact of chronic exposure to the pesticide chlorpyrifos on respiratory parameters and sleep apnea in juvenile and adult rats. PLoS ONE 13(1):e0191237. https://doi.org/10.1371/journal.pone.0191237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76(2):371–423

    Article  CAS  Google Scholar 

  32. Florini JR (1987) Hormonal control of muscle growth. Muscle Nerve 10(7):577–598. https://doi.org/10.1002/mus.880100702

    Article  CAS  PubMed  Google Scholar 

  33. LaFramboise WA, Daood MJ, Guthrie RD et al (1991) Emergence of the mature myosin phenotype in the rat diaphragm muscle. Dev Biol 144(1):1–15. https://doi.org/10.1016/0012-1606(91)90473-g

    Article  CAS  PubMed  Google Scholar 

  34. Bright JE, Inns RH, Tuckwell NJ, Griffiths GD, Marrs TC (1991) A histochemical study of changes observed in the mouse diaphragm after organophosphate poisoning. Hum Exp Toxicol 10(1):9–14. https://doi.org/10.1177/096032719101000102

    Article  CAS  PubMed  Google Scholar 

  35. Kelly SS, Mutch E, Williams FM, Blain PG (1994) Electrophysiological and biochemical effects following single doses of organophosphates in the mouse. Arch Toxicol 68(7):459–466. https://doi.org/10.1007/s002040050097

    Article  CAS  PubMed  Google Scholar 

  36. Maurissen JP, Hoberman AM, Garman RH, Hanley TR Jr (2000) Lack of selective developmental neurotoxicity in rat pups from dams treated by gavage with chlorpyrifos. Toxicol Sci 57(2):250–263. https://doi.org/10.1093/toxsci/57.2.250

    Article  CAS  PubMed  Google Scholar 

  37. Mansour SA, Mossa AH (2010) Adverse effects of lactational exposure to chlorpyrifos in suckling rats. Hum Exp Toxicol 29(2):77–92. https://doi.org/10.1177/0960327109357276

    Article  CAS  PubMed  Google Scholar 

  38. Kaur S, Singla N, Dhawan DK (2019) Neuro-protective potential of quercetin during chlorpyrifos induced neurotoxicity in rats. Drug Chem Toxicol 42(2):220–230. https://doi.org/10.1080/01480545.2019.1569022

    Article  CAS  PubMed  Google Scholar 

  39. Vanova N, Pejchal J, Herman D, Dlabkova A, Jun D (2018) Oxidative stress in organophosphate poisoning: role of standard antidotal therapy. J Appl Toxicol 38(8):1058–1070. https://doi.org/10.1002/jat.3605

    Article  PubMed  Google Scholar 

  40. Goel A, Chauhan DP, Dhawan DK (2000) Protective effects of zinc in chlorpyrifos induced hepatotoxicity: a biochemical and trace elemental study. Biol Trace Elem Res 74(2):171–183. https://doi.org/10.1385/BTER:74:2:171

    Article  CAS  PubMed  Google Scholar 

  41. Rasmussen MH (2010) Obesity, growth hormone and weight loss. Mol Cell Endocrinol 316(2):147–153. https://doi.org/10.1016/j.mce.2009.08.017

    Article  CAS  PubMed  Google Scholar 

  42. Bidlingmaier M, Strasburger CJ (2010) Growth hormone. Handb Exp Pharmacol 195:187–200. https://doi.org/10.1007/978-3-540-79088-4_8

    Article  CAS  Google Scholar 

  43. Fong Y, Rosenbaum M, Tracey KJ et al (1989) Recombinant growth hormone enhances muscle myosin heavy-chain mRNA accumulation and amino acid accrual in humans. Proc Natl Acad Sci USA 86(9):3371–3374. https://doi.org/10.1073/pnas.86.9.3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mazza E, Ghigo E, Boffano G et al (1994) Effects of direct and indirect acetylcholine receptor agonists on growth hormone secretion in humans. Eur J Pharmacol 254(1–2):17–20. https://doi.org/10.1016/0014-2999(94)90364-6

    Article  CAS  PubMed  Google Scholar 

  45. Carr RL, Chambers HW, Guarisco JA, Richardson JR, Tang J, Chambers JE (2001) Effects of repeated oral postnatal exposure to chlorpyrifos on open-field behavior in juvenile rats. Toxicol Sci 59(2):260–267. https://doi.org/10.1093/toxsci/59.2.260

    Article  CAS  PubMed  Google Scholar 

  46. Hallal N, Khalil M, Moustafa ME, Ramadan W, Joumaa WH (2019) Data on dysfunctional muscle contraction and genes contractile expression associated with chlorpyrifos exposure in slow twitch skeletal muscle. Data Brief 27:104775

    Article  Google Scholar 

  47. Marty MS, Andrus AK, Bell MP et al (2012) Cholinesterase inhibition and toxicokinetics in immature and adult rats after acute or repeated exposures to chlorpyrifos or chlorpyrifos-oxon. Regul Toxicol Pharmacol 63(2):209–224. https://doi.org/10.1016/j.yrtph.2012.03.015

    Article  CAS  PubMed  Google Scholar 

  48. Burd PF, Ferry CB (1987) A prolonged contraction at the end-plate region of the diaphragm of rats and mice after anticholinesterases in vitro. J Physiol 391:429–440. https://doi.org/10.1113/jphysiol.1987.sp016747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Costa LG, Schwab BW, Murphy SD (1982) Tolerance to anticholinesterase compounds in mammals. Toxicology 25(2–3):79–97. https://doi.org/10.1016/0300-483x(82)90021-x

    Article  CAS  PubMed  Google Scholar 

  50. Rochester DF (1985) The diaphragm: contractile properties and fatigue. J Clin Invest 75(5):1397–1402. https://doi.org/10.1172/JCI111841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Corasaniti MT, Bagetta G, Rodinò P, Gratteri S, Nisticò G (1992) Neurotoxic effects induced by intracerebral and systemic injection of paraquat in rats. Hum Exp Toxicol 11(6):535–539. https://doi.org/10.1177/096032719201100616

    Article  CAS  PubMed  Google Scholar 

  52. Steinbacher P, Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5(2):356–377. https://doi.org/10.3390/biom5020356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miller MS, Bedrin NG, Ades PA, Palmer BM, Toth MJ (2015) Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area. Am J Physiol Cell Physiol 308(6):C473–C484. https://doi.org/10.1152/ajpcell.00158.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Joumaa WH, Bouhlel A, Même W, Léoty C (2002) Methyl jasmonate-induced stimulation of sarcoplasmic reticulum Ca(2+)-ATPase affects contractile responses in rat slow-twitch skeletal muscle. J Pharmacol Exp Ther 300(2):638–646. https://doi.org/10.1124/jpet.300.2.638

    Article  CAS  PubMed  Google Scholar 

  55. Baldwin KM, Haddad F (2001) Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90(1):345–357. https://doi.org/10.1152/jappl.2001.90.1.345

    Article  CAS  PubMed  Google Scholar 

  56. Chaillou T (2018) Skeletal muscle fiber type in hypoxia: adaptation to high-altitude exposure and under conditions of pathological hypoxia. Front Physiol 9:1450. https://doi.org/10.3389/fphys.2018.01450

    Article  PubMed  PubMed Central  Google Scholar 

  57. Meznaric M, Eržen I, Karen P, Cvetko E (2018) Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle. Ann Anat 216:95–99. https://doi.org/10.1016/j.aanat.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  58. Gea JG (1997) Myosin gene expression in the respiratory muscles. Eur Respir J 10(10):2404–2410. https://doi.org/10.1183/09031936.97.10102404

    Article  CAS  PubMed  Google Scholar 

  59. Joumaa WH, Léoty C (2002) A comparative analysis of the effects of exercise training on contractile responses in fast- and slow-twitch rat skeletal muscles. J Comp Physiol B 172(4):329–338. https://doi.org/10.1007/s00360-002-0259-y

    Article  CAS  PubMed  Google Scholar 

  60. Vignaud A, Fougerousse F, Mouisel E et al (2008) Genetic inactivation of acetylcholinesterase causes functional and structural impairment of mouse soleus muscles. Cell Tissue Res 333(2):289–296. https://doi.org/10.1007/s00441-008-0640-6

    Article  CAS  PubMed  Google Scholar 

  61. Joshi SC, Mathur R, Gulati N (2007) Testicular toxicity of chlorpyrifos (an organophosphate pesticide) in albino rat. Toxicol Ind Health 23(7):439–444. https://doi.org/10.1177/0748233707080908

    Article  CAS  PubMed  Google Scholar 

  62. Peiris DC, Dhanushka T (2017) Low doses of chlorpyrifos interfere with spermatogenesis of rats through reduction of sex hormones. Environ Sci Pollut Res Int 24(26):20859–20867. https://doi.org/10.1007/s11356-017-9617-x

    Article  CAS  PubMed  Google Scholar 

  63. Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S (2006) Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab 91(8):3024–3033. https://doi.org/10.1210/jc.2006-0357

    Article  CAS  PubMed  Google Scholar 

  64. Axell AM, MacLean HE, Plant DR et al (2006) Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. Am J Physiol Endocrinol Metab 291(3):E506–E516. https://doi.org/10.1152/ajpendo.00058.2006

    Article  CAS  PubMed  Google Scholar 

  65. Turpeinen U, Hämäläinen E (2013) Determination of cortisol in serum, saliva and urine. Best Pract Res Clin Endocrinol Metab 27(6):795–801. https://doi.org/10.1016/j.beem.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  66. Güven M, Bayram F, Unlühizarci K, Keleştimur F (1999) Endocrine changes in patients with acute organophosphate poisoning. Hum Exp Toxicol 18(10):598–601. https://doi.org/10.1191/096032799678839419

    Article  PubMed  Google Scholar 

  67. Lapier TK (1997) Glucocorticoid-induced muscle atrophy. The role of exercise in treatment and prevention. J Cardiopulm Rehabil 17(2):76–84

    Article  CAS  Google Scholar 

  68. - Animals (Scientific Procedures) Act 1986, http://www.legislation.gov.uk/ukpga/1986/14/contents/enacted, (accessed November 5, 2019)

  69. - Directive 2010/63/EU of the European Parliament and of the Council of 22 September (2010) on the protection of animals used for scientific purposes Text with EEA relevance, vol. OJ L

  70. Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  71. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was part of the Ph.D. studies of Hiba El Khayat El Sabbouri, funded by the “Association pour la Spécialisation et l’ orientation Scientifique” (Beirut, Lebanon) and was supported by a grant from the Lebanese University.

Author information

Authors and Affiliations

Authors

Contributions

HEKES Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Software, Validation, Writing—original draft, Writing—review & editing. NH Methodology, Writing—review & editing. WD Methodology, Writing—review & editing. JGQ: Conceptualization, Visualization, Writing—review & editing. VB: Conceptualization, Visualization, Writing—review & editing. WR: Conceptualization, Project administration, Supervision, Validation, Visualization, Writing—review & editing. WHJ Conceptualization, Funding acquisition, Validation, Visualization, Writing—review & editing.

Corresponding author

Correspondence to Wiam Ramadan.

Ethics declarations

Conflict of interest

Hiba El Khayat El Sabbouri, Nancy Hallal, Walaa Darwiche, Jérôme Gay-Quéheillard, Véronique Bach, Wiam Ramadan and Wissam H. Joumaa declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL Sabbouri, H.E.K., Hallal, N., Darwiche, W. et al. Effect of chronic chlorpyrifos exposure on diaphragmatic muscle contractility and MHC isoforms in adult rats. Toxicol. Environ. Health Sci. 14, 77–87 (2022). https://doi.org/10.1007/s13530-021-00121-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-021-00121-6

Keywords

Navigation