Skip to main content
Log in

In vitro and in silico study of antioxidant effect of Bergenia ciliata and Terminalia chebula against sodium oxalate induced oxidative stress

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Previous experimental evidence suggested that Bergenia ciliata (Saxifragaceae) and Terminalia chebula Retzius(Combretaceae) are effective against nephrolithiasis and have potential antioxidant activity. In this regard, hydro-methanolic extracts of B. ciliata rhizomes and T. chebula fruits were investigated for antioxidant potential against sodium oxalate induced oxidative imbalance in the kidney of female Wistar rats. We also performed molecular docking studies of all the reported phenolic compounds of both the plants to evaluate its interaction with the active site of oxalate binding protein (OBP). In summary, our findings showed that sodium oxalate caused significant increase in lipid peroxidation with concurrent decrease in activities of superoxide dismutase and catalase as well as in total reduced glutathione content in a concentration-dependent manner. The hydro-alcoholic extracts, however, when co-administered with sodium oxalate resulted in significant protection with maximum percent protection was achieved by B. ciliata. Thereafter, daucosterol showed best binding efficiency with OBP. However, further work on the purification of isolated bioactive components and pharmacological testing can reveal the therapeutic potential of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lieske, J. C., Pena de la Vega, L. S. & Slezak, J. M. Renal stone epidemiology in Rochester, Minnesota: An update. Kidney Int. 69, 760–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Trinchieri, A. Epidemiological trends in urolithiasis: Impact on our health care systems. Urol. Res. 34, 151–156 (2006).

    Article  PubMed  Google Scholar 

  3. Coe, F. L., Parks, J. H. & Asplin, J. R. The pathogenesis and treatment of kidney stones. N. Engl. J. Med. 327, 1141–1152 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Koul, H. et al. Activation of c-myc gene mediates the mitogenic effects of oxalate in LLC-PK1 cells, a line of renal epithelial cells. Kidney Int. 50, 1525(1996).

    Article  CAS  PubMed  Google Scholar 

  5. Koul, H. et al. Oxalate-induced initiation of DNA synthesis in LLC-PK1 cells, a line of renal epithelial cells. Biochem. Biophys. Res. Commun. 205, 632 (1994).

    Article  Google Scholar 

  6. Thamilselvan, S., Khan, S. R. & Menon, M. Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol. Res. 31, 3 (2003).

    CAS  PubMed  Google Scholar 

  7. Thamilselvan, S. & Khan, S. R. Oxalate and calcium oxalate crystals are injurious to renal epithelial cells: results of in vivo and in vitro studies. J. Nephrol. 11, 66 (1998).

    PubMed  Google Scholar 

  8. Khand, F. D. et al. Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. Free Radical Biol. Med. 32, 1339 (2002).

    Article  CAS  Google Scholar 

  9. Miller, C. et al. Oxalate toxicity in renal epithelial cells: characteristics of apoptosis and necrosis. Toxicol. Appl. Pharmacol. 162, 132 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Knoll, T. et al. The influence of oxalate on renal epithelial and interstitial cells. Urol. Res. 32, 304 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Knoll, T. Stone disease. Eur. Urol. Suppl. 6, 717–722 (2007).

    Article  Google Scholar 

  12. Butterweck, V. & Khan, S. R. Herbal medicines in the management of urolithiasis: Alternative or complementary? Planta Med. 75, 1095–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Prasad, K., Sujatha, D. & Bharathi, K. Herbal drugs in urolithiasis- a review. Phcog. Rev. 1, 175–179 (2007).

    CAS  Google Scholar 

  14. Cox, P. & Balick, M. The ethnobotanical approach to drug discovery. Sci. Am. 270, 82–87 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Pant, S., Samant, S. S. & Arya, S. C. Diversity and indigenous household remedies of the inhabitants surrounding Mornaula reserve forest in West Himalaya. Ind. J. Trad. Knowledge 8, 606–610 (2009).

    Google Scholar 

  16. Islam, M. et al. Bioactivity evaluation of Bergenia ciliata. Pak. J. Pharm. Sci. 15, 15–33 (2002).

    PubMed  Google Scholar 

  17. Rajkumar, V., Guha, G., Kumar, A. R. & Mathew, L. Evaluation of antioxidant activities of Bergenia ciliata rhizome. Records Nat. Prod. 4, 38–48 (2010).

    CAS  Google Scholar 

  18. Singh, V. Traditional remedies to treat asthma in North West and Trans Himalayan region in J&K state. Fitoterapia 66, 507 (1995).

    Google Scholar 

  19. Saha, S. & Verma, R. J. Bergenia ciliata extract prevents ethylene glycol induced histopathological changes in the kidney. Acta Pol. Pharm. Drug Res. 68, 711–715 (2011).

    Google Scholar 

  20. Saha, S., Shrivastav, P. S. & Verma, R. J. Antioxidative mechanism involved in the preventive efficacy of Bergenia ciliata rhizomes against experimental nephrolithiasis in rats. Pharm. Biol. 52, 712–722 (2014).

    Article  PubMed  Google Scholar 

  21. Saha, S. & Verma, R. J. Inhibition of calcium oxalate crystallization in vitro by an extract of Bergenia ciliata. Arab J. Urol. 11, 187–192 (2013).

    Article  Google Scholar 

  22. Tasaduq, S. A. et al. Hepatocurative and antioxidant profile of HP-1, a polyherbal phytomedicine. Human Exp. Toxicol. 22, 639–645 (2003).

    Article  CAS  Google Scholar 

  23. Minkyun, N. A. et al. Cytoprotective effect on oxidative stress and inhibitory effect on cellular aging of Terminialia chebula fruit. Phytother. Res. 18, 737–741 (2004).

    Article  Google Scholar 

  24. Kannan, V. R. et al. Anti-diabetic activity on ethanolic extracts of fruits of Terminalia chebula Retz. alloxan induced diabetic rats. Am. J. Drug Dis. Dev. 2, 135–142 (2012).

    Article  Google Scholar 

  25. Lee, H. S., Jung, S. H., Yun, B. S. & Lee, K. W. Isolation of chebulic acid from Terminalia chebula Retz. & its antioxidant effect in isolated rat hepatocytes. Arch. Toxicol. 81, 211–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, D. et al. Anti- bacterial and anti-viral activities of extracts from Terminalia chebula barks. J. Korean Soc. App. Biol. Chem. 54, 295–298 (2011).

    Google Scholar 

  27. Nair, V., Singh, S. & Gupta Y. K. Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models. J. Pharm. Pharmacol. 62, 1806–1806 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Israni, D. A., Patel, K. V. & Gandhi, T. R. Anti-hyperlipidemic activity of aqueous extract of Terminalia chebula and Gaumutra in high cholesterol diet fed rats. Int. J. Pharm. Sci. 1, 48–59 (2010).

    Google Scholar 

  29. Pratibha, N. et al. Anti-inflammatory activities of Aller-7, a novel polyherbal formulation for allergic rhinitis. Int. J. Tissue Reac. 26, 43–51 (2004).

    CAS  Google Scholar 

  30. Thamilselvan, S., Hackett, R. L. & Khan, S. R. Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J. Urol. 157,1059–1063 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Moriyama, M. T. et al. Inhibitions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophylla Makino in a rat calcium oxalate urolithiasis model. Int. J. Urol. 16, 397–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Selvam, R. & Kurien, T. B. Induction of lipid peroxidation by oxalate in experimental rat urolithiasis. J. Biosci. 12, 367–373 (1987).

    Article  CAS  Google Scholar 

  33. Green, M. L., Freel, R. W. & Hatch, M. Lipid peroxidation is not the underlying cause of renal injury in hyperoxaluric rats. Kidney Int. 68, 2629–2638 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Selvam, R., Kalaiselvi, P., Govindaraj, A., Murugan, V. M. & Satishkumar, A. S. Effect of Aerva lanata leaf extract and Vediuppu chunnam on the urinary risk factors of calcium oxalate urolithiasis during experimental hyperoxaluria. Pharmacol. Res. 43, 89–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Thamilselvan, S. & Menon, M. Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. British J. Urol. Int. 96, 117–126 (2005).

    Article  CAS  Google Scholar 

  36. Ghalayini, I. F., Al-Ghazo, M. A. & Harfeil, M. N. A. Prophylaxis and therapeutic effects of raspberry (Rubus idaeus) on renal stone formation in Balb/c mice. Int. Brazilian J. Urol. 37, 259–267 (2011).

    Google Scholar 

  37. Beyhan, O., Elmastas, M. & Gedikli, F. Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). J. Med. Plants Res. 4, 1065–1072 (2010).

    CAS  Google Scholar 

  38. Toblli, J. E. et al. Effects of angiotensin II subtype 1 receptor blockade by losartan on tubulointerstitial lesions caused by hyperoxaluria. J. Urol. 168, 1550–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Häckl, L. P., Cuttle, G., Dovichi, S. S., Lima-Landman, M. T. & Nicolau, M. Inhibition of angiotensin-converting enzyme by quercetin alters the vascular response to bradykinin and angiotensin I. Pharmacol. 65, 182–186 (2002).

    Article  Google Scholar 

  40. Goretta, L. A., Ottaviani, J. I. & Fraga, C. G. Inhibition of angiotensin converting enzyme activity by flavanolrich foods. J. Agri. Food Chem. 54, 234–(2006).

  41. Seethalakshmi, L., Selvam, R., Mahle, C. J. & Menon, M. Binding of oxalate to mitochondrial inner membranes of rat and kuman kidney. J. Urol. 135, 862–865 (1986).

    Google Scholar 

  42. Selvam, R. & Kalaiselvi, P. Oxalate binding proteins in calcium oxalate nephrolithiasis. Urol. Res. 31, 242–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem 95, 351–358 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. Kakkar, P., Das, B. & Viswanathan, P. N. A modified spectrophotometric assay of superoxide dismutase. Ind. J. Biochem. Biophys. 21, 130–132 (1984).

    CAS  Google Scholar 

  45. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with folin-phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  46. Sinha, A. K. Calorimetric assay of catalase. Analytical Biochem. 47, 389–394 (1972).

    Article  CAS  Google Scholar 

  47. Moron, M. S., Depierre, J. W. & Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochem. Biophys. Acta 582, 67–78 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Gezelter, J. D. Introduction to Avogadro, Chemistry 20262- Computational Chemistry, Spring (2012).

    Google Scholar 

  50. Laurie, A. T. & Jackson, R. M. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinform. 21, 1908–1916 (2005).

    Article  CAS  Google Scholar 

  51. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Huey, R., Morris, G. M., Olson, A. J. & Goodsell, D. S. A. Semiempirical free energy force field with charge based desolvation. J. Comput. Chem. 28, 1145–1152 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Solis, F. J. & Wets, J. B. Minimization by random search techniques. Math. Oper. Res. 6, 19–30 (1981).

    Article  Google Scholar 

  54. Wallace, A. C., Laskowski, R.. & Thornton, J. M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Prot. Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarmistha Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Verma, R.J. In vitro and in silico study of antioxidant effect of Bergenia ciliata and Terminalia chebula against sodium oxalate induced oxidative stress. Toxicol. Environ. Health Sci. 7, 50–57 (2015). https://doi.org/10.1007/s13530-015-0220-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-015-0220-6

Keywords

Navigation