Skip to main content
Log in

Inhibitory effect of bee venom on the growth of Trichomonas vaginalis

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Trichomoniasis, a common cause of vaginitis, is the most common sexually transmitted infection in humans, worldwide. It is caused by infection with the single-celled protozoan parasite, Trichomonas vaginalis, which disrupts normal vaginal flora. The administration of metronidazole, approved by the WHO, is currently being used for trichomoniasis treatment. However, there is a great need for development of safe alternative drugs from natural products because of metronidazole’s adverse effects. In this investigation, bee venom effectively inhibited Trichomonas vaginalis growth in a concentration-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pertrin, D., Delgaty, K., Bhatt, R. & Garber, G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin. Microbiol Rev. 11, 300–317 (1998).

    Google Scholar 

  2. Ryu, J. S. & Min, D. Y. Trichomonas vaginalis and trichomoniasis in the Republic of Korea. Korean J. Parasitol. 44, 101–116 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Tiwari, P., Sihgh, D. & Singh, M. M. Anti-Trichomonas activity of Sapindus saponins, a candidate for development as microbicidal contraceptive. J. Antimicrob. Chemother. 62, 526–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Meingassner, J. G., Havelec, L. & Mieth, H. Studies on strain sensitivity of Trichomonas vaginalis to metronidazole. Br. J. Vener. Dis. 54, 72–76 (1978).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Wolner-Hanssen, P. et al. Clinical manifestations of vaginal trichomoniasis. JAMA 261, 571–576 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Dunne, R. L., Dunn, L. A., O’Donoqhue, P. J. & Upcroft, J. A. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res. 13, 239–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. De Jesus, J. B. et al. A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis. Proteomics 12, 1961–1972 (2007).

    Article  Google Scholar 

  8. Lenker, M. W., Arroyo, R. & Alderete, J. F. The regulation of iron of the synthesis of adhesions and cytoadherence levels in the protozoan. Trichomonas vaginalis. J. Exp. Med. 174, 311–318 (1991).

    Article  Google Scholar 

  9. Ribeiro, K. C., Mariante, R. M., Coutinho, L. L. & Benchimol, M. Nucleus behavior during the closed mitosis of Tritrichomonas foetus. Biol. Cell. 94, 289–301 (2002).

    Article  PubMed  Google Scholar 

  10. Lindmark, D. G. & Muller, M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem. 248, 7724–7728 (1973).

    CAS  PubMed  Google Scholar 

  11. ter Kuile, B. H. Metabolic adaptation of Trichomonas vagianlis to growth rate and glucose availability. Microbiology 142, 3337–3345 (1996).

    Article  PubMed  Google Scholar 

  12. Bouma, M. J. et al. Acitivity of disulfiram(bis(diethylthiocarbamoyl) disulphide) and ditiocarb (diethyldothiocarbamate) against metronidazole-sensitibe and — resistant Trichomonas vaginalis and Tritrichomonas foetus. J. Antimicrob. Chemother. 42, 817–820 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kirkcaldy, R. D. et al. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD surveillance network, 2009–2010. Emerg. Infect. Dis. 18, 939–943 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ryang, Y. S. et al. Antiparasitic effects of a herb extract from Gentiana scabra var. buergeri on Trichomonas vaginalis. Korean J. Biomed. Lab Sci. 7, 53–58 (2001).

    Google Scholar 

  15. EI-Sherbiny, G. M. & EI-Sherbiny, E. T. The effect of Commiphora molmol (Myrrh) in treatment of Trichomoniasis vaginalis infection. Iran Red Crescent Med. J. 13, 480–486 (2011).

    Google Scholar 

  16. Lee, Y. J. et al. Cytotoxicity of honeybee (Apis mellifera L.) venom in normal human lymphocytes and HL-60 cells. Chem. Biol. Interact. 169, 189–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Huh, J. E. et al. Bee venom inhibits tumor angiogenesis and metastasis by inhibiting tyrosine phophorylation of VEGFR-2 in LLC-tumor-bearing mice. Cancer Lett. 292, 98–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Han, S. M., Lee, K. G., Yeo, J. H., Baek, H. J. & Park, K. K. Antibacterial and anti-inflammatory effects of honeybee (Apis mellifera L.) venom against acne-inducing bacteria. J. Med. Plants Res. 4, 459–464 (2010).

    CAS  Google Scholar 

  19. Ahn, B. J. & Song, H. S. Effect of bee venom death receptor dependent apoptosis and JAK2/STAT3 pathway in the ovarian cancer. The Acupuncture 29, 47–59 (2012).

    Article  Google Scholar 

  20. Ryu, J. S., Min, D. Y., Kim, M. C., Kim, N. S. & Shin, M. H. In vitro activities of 2,2′-dipyridyl against Trichomonas vaginalis, Candida albicans, and Gardnerella vaginalis. J. Microbiol. Biotechnol. 11, 124–130 (2001).

    CAS  Google Scholar 

  21. Ertabaklar, H., Kivcak, B., Mert, T. & Ozensoy Töz, S. In vitro activity of Arvutus unedo leaf extracts against Trichomonas vaginalis triphozoites. Turkiye Parazitol. Derg. 33, 263–265 (2009).

    PubMed  Google Scholar 

  22. Yu, A. R. et al. The antifungal activity of bee venom against dermatophytes. J. Appl. Biol. Chem. 55, 7–11 (2012).

    Article  CAS  Google Scholar 

  23. Stocker, J. F. & Traynor, J. R. The action of various venoms on Escherichia coli. J. Appl. Bacteriol. 61, 383–388 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Perumal, S. R. et al. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phopholipase A2 enzymes. J. Appl. Microbiol. 102, 650–659 (2007).

    Article  Google Scholar 

  25. Nakatuji, T. et al. Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. J. Invest Dermatol. 129, 2480–2488 (2009).

    Article  Google Scholar 

  26. Hoe, S. T. & Crabbe, M. J. Kinetic effects of metal ion chelating reagents and their analogues on bovine lens aldehyde dehydrogenase. Exp. Eye Res. 44, 663–675 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Horky, L. L., Pluta, R. M., Boock, R. J. & Oldifield, E. H. Role of ferrous iron chelator 2,2′-dipyridyl in preventing delayed vasospasm in a primate model of subarachnoid hemorrhage. J. Neurosurg. 88, 298–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kerbs, S., Hutton, R. & Lancaster, M. Effects of deferoxamine methanesulfonate on Trichophyton mentagrophytes. Sabouraudia. 17, 241–250 (1979).

    Article  CAS  PubMed  Google Scholar 

  29. Park, S. K., Jin, E. S., Lee, C. G. & Lee, M. Y. High light-induced changes in the activities of antioxidant enzymes and the accumulation of astaxanthin in the green alga Haematococcus pluvialis. Mol. Cell Toxicol. 4, 300–306 (2008).

    Google Scholar 

  30. Choi, G. M. & Lee, M. Y. Differential protein expression associated with heat stress in antarctic microalga. BioChip J. 6, 271–279 (2012).

    Article  CAS  Google Scholar 

  31. Ellis, J. E., Yarlett, N., Cole, D., Humphreys, M. J. & Lloyd, D. Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology 140, 2489–2494 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Voncken, F. et al. Multiple origins of hydrogenosomes: finctional and phylogenetic evidence from the ADP/ ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol. Microbiol. 44, 1441–1454 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Gelbart, S. M. et al. Growth of Trichomonas vaginalis in commercial culture media. J. Clin. Microbiol. 28, 962–964 (1990).

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Ryu, J. S., Chio, R., Park, S. Y., Park, H. & Min, D. Y. Biological and biochemical modulation of Trichomonas vaginalis KT9 isolate after shifting of culture medium from TPS-1 into TYM. Korean J. Parasitol. 36, 255–260 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Smith, R. F. Viability of Trichomonas vaginalis in vitro at four temperatures. J. Clin. Microbiol. 18, 834–836 (1983).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Ryu, JS. & Lee, MY. Inhibitory effect of bee venom on the growth of Trichomonas vaginalis . Toxicol. Environ. Health Sci. 6, 48–53 (2014). https://doi.org/10.1007/s13530-014-0187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-014-0187-8

Keywords

Navigation