Skip to main content
Log in

Anti-oxidant, anti-inflammatory and anti-cholinergic action of Adhatoda vasica Nees contributes to amelioration of diabetic encephalopathy in rats: Behavioral and biochemical evidences

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

‘Diabetic encephalopathy’ refers to diabetes associated cognitive decline (DACD), which involves oxidative-nitrosative stress, inflammation and cholinergic dysfunction. Current study was designed to investigate the effect of Adhatoda vasica, a known anti-inflammatory, antioxidant, anti-cholinesterase and anti-hyperglycemic plant, on diabetic encephalopathy. Streptozotocin (STZ)-induced diabetic Wistar rats were treated with Adhatoda vasica leaves ethanolic extract (AVEE) for 6 weeks at 100, 200 and 400 mg/kg/day dose. During fifth week of treatment, learning and memory was investigated in single Y-maze and passive avoidance test. At the end of the study biochemical parameters like acetylcholinesterase (AchE) activity, nitrite levels, tumor necrosis factor-alpha (TNF-α) and oxidative stress was measured from cerebral cortex and hippocampus regions of brain. AchE activity was found increased by 70 % in the cerebral cortex of diabetic rat brain. Lipid peroxidation (LPO) levels were increased by 100 % and 94 % in cerebral cortex and hippocampus of diabetic rats, respectively. Non-protein thiol levels, enzymatic activities of superoxide dismutase and catalase were found decreased in cerebral cortex and hippocampal regions of diabetic rat brain. Nitrite levels in both regions of diabetic brain were increased by 170 % and 137 % respectively. TNF-α, a pro-inflammatory cytokine, was found significantly increased in diabetic rats. Conversely, animal groups treated with AVEE significantly attenuated these behavioral and biochemical abnormalities. The results suggest a protective role of Adhatoda vasica Nees against diabetic encephalopathy, which may be sum of its anti-oxidant, anti-cholinesterase, anti-inflammatory and glucose lowering action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crosby-Nwaobi R, Sivaprasad S, Forbes A, Crosby-Nwaobi R. A systematic review of the association of diabetic retinopathy and cognitive impairment in people with type 2 diabetes. Diabetes Res Clin Pract. 2012;96:101–10.

    Article  PubMed  CAS  Google Scholar 

  2. Biessels GJ, van der Heide LP, Kamal A, Bleys RLAW, Gispen WH. Ageing and diabetes: Implications for brain function. Eur J Pharmacol. 2002;441:1–14.

    Article  PubMed  CAS  Google Scholar 

  3. Sima AAF, Kamiya H, Li ZG. Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol. 2004;490:187–97.

    Article  PubMed  CAS  Google Scholar 

  4. Lang BT, Yan Y, Dempsey RJ, Vemuganti R. Impaired neurogenesis in adult type-2 diabetic rats. Brain Res. 2009;1258:25–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Arvanitaki Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661–6.

    Article  Google Scholar 

  6. Trudeau F, Gagnon S, Massicotte S. Hippocampal synaptic plasticity and glutamate receptor regulation: Influences of diabetes mellitus. Eur J Pharmacol. 2004;490:177–86.

    Article  PubMed  CAS  Google Scholar 

  7. Ryan CM. Diabetes, aging, and cognitive decline. Neurobiol Aging. 2005;26:21–5.

    Article  PubMed  Google Scholar 

  8. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006;5:64–74.

    Article  PubMed  Google Scholar 

  9. Wrighten SA, Piroli GG, Grillo CA, Reagan LP. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim Biophys Acta. 2009;1792:444–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Messier C, Gagnon M. Cognitive decline associated with dementia and type 2 diabetes: The interplay of risk factors. Diabetologia. 2009;52:2471–4.

    Article  PubMed  CAS  Google Scholar 

  11. Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci. 2001;928:168–75.

    Article  PubMed  CAS  Google Scholar 

  12. Baydas G, Canatan H, Turkoglu A. Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus. J Pineal Res. 2002;32:225–30.

    Article  PubMed  CAS  Google Scholar 

  13. Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, et al. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol. 2005;187:37–44.

    Article  PubMed  CAS  Google Scholar 

  14. Somfai GM, Knippel B, Ruzicska E, Stadler K, Toth M, Salacz G, et al. Soluble semicarbazide-sensitive amine oxidase (SSAO) activity is related to oxidative stress and subchronic inflammation in streptozotocin-induced diabetic rats. Neurochem Int. 2006;48:746–52.

    Article  PubMed  CAS  Google Scholar 

  15. Kuhad A, Chopra K. Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences. Eur J Pharmacol. 2007;576:34–42.

    Article  PubMed  CAS  Google Scholar 

  16. Kuhad A, Sethi R, Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci. 2008;83:128–34.

    Article  PubMed  CAS  Google Scholar 

  17. Liu YW, Zhu X, Li W, Lu Q, Wang JY, Wei YQ, et al. Ginsenoside Re attenuates diabetes-associated cognitive deficits in rats. Pharmacol Biochem Behav. 2012;101:93–8.

    Article  PubMed  CAS  Google Scholar 

  18. Kuhad A, Chopra K. Effect of sesamol on diabetes-associated cognitive decline in rats. Exp Brain Res. 2008;185:411–20.

    Article  PubMed  Google Scholar 

  19. Wang CF, Li DQ, Xue HY, Hu B. Oral supplementation of catalpol ameliorates diabetic encephalopathy in rats. Brain Res. 2010;1307:158–65.

    Article  PubMed  CAS  Google Scholar 

  20. Kuhad A, Bishnoi M, Tiwari V, Chopra K. Suppression of NF-κβ signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol Biochem Behav. 2009;92:251–9.

    Article  PubMed  CAS  Google Scholar 

  21. Liu YW, Zhu X, Lu Q, Wang JW, Li W, Wei YQ, et al. Total saponins from Rhizoma Anemarrhenae ameliorate diabetes-associated cognitive decline in rats: Involvement of amyloid-beta decrease in brain. J Ethnopharmacol. 2012;139:194–200.

    Article  PubMed  CAS  Google Scholar 

  22. Biessels GJ, Kerssen A, Haan EHF, Kappelle LJ. Cognitive dysfunction and diabetes: Implications for primary care. Primary Care Diabetes. 2007;1:187–93.

    Article  PubMed  Google Scholar 

  23. Saxena S, Singh SP, Pal R, Singh S, Pratap R, Nath C. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav. 2007;86:797–805.

    Article  PubMed  CAS  Google Scholar 

  24. Xue H, Jin L, Jin L, Zhang P, Li D, Xia Y, et al. Neuroprotection of aucubin in primary diabetic encephalopathy. Sci China C Life Sci. 2008;51:495–502.

    Article  PubMed  CAS  Google Scholar 

  25. Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Correa M, et al. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2009;610:42–8.

    Article  PubMed  CAS  Google Scholar 

  26. Claeson UP, Malmfors T, Wikman G, Bruhn JG. Adhatoda vasica: A critical review of ethnopharmacological and toxicological data. J Ethnopharmacol. 2000;72:1–20.

    Article  PubMed  CAS  Google Scholar 

  27. Kumar A, Ram J, Samarth RM, Kumar M. Modulatory influence of Adhatoda vasica Nees leaf extract against gamma irradiation in Swiss albino mice. Phytomedicine. 2005;12:285–93.

    Article  PubMed  CAS  Google Scholar 

  28. Samarth RM, Panwar M, Kumar M, Soni A, Kumar M, Kumar A. Evaluation of antioxidant and radical-scavenging activities of certain radioprotective plant extracts. Food Chem. 2008;106:868–73.

    Article  CAS  Google Scholar 

  29. Roja G, Vikrant BH, Sandur SK, Sharma A, Pushpa KK. Accumulation of vasicine and vasicinone in tissue cultures of Adhatoda vasica and evaluation of the free radical-scavenging activities of the various crude extracts. Food Chem. 2011;126:1033–8.

    Article  CAS  Google Scholar 

  30. Gao H, Huang YN, Gao B, Li P, Inagaki C, Kawabata J. Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chem. 2008;108:965–72.

    Article  CAS  Google Scholar 

  31. Lahiri PK, Pradhan SN. Pharmacological investigation of vasicinol-an alkaloid from Adhatoda vasica Nees. Indian J Exp Biol. 1964;2:219–22.

    Google Scholar 

  32. Chakraborty A, Brantner AH. Study of alkaloids from Adhatoda vasica Nees on their anti-inflammatory activity. Phytother Res. 2001;15:532–4.

    Article  PubMed  CAS  Google Scholar 

  33. Srinivasarao D, Jayarraj IA, Jayraaj R, Prabha ML. A study on antioxidant and anti-inflammatory activity of vasicine against lung damage in rats. Indian J Allergy Asthma Immunol. 2006;20:1–7.

    Google Scholar 

  34. Karthikeyan A, Shanthi V, Nagasathaya A. Preliminary phytochemical and antibacterial screening of crude extract of the leaf of Adhathoda vasica. L. Int J Green Pharm. 2009:78–80.

  35. Yadav AK, Tangpu V. Anticestodal activity of Adhatoda vasica extract against Hymenolepis diminuta infections in rats. J Ethnopharmacol. 2008;119:322–4.

    Article  PubMed  Google Scholar 

  36. Iwai T, Iinuma Y, Kodani R, Oka J. Neuromedin U inhibits inflammation-mediated memory impairment and neuronal cell-death in rodents. Neurosci Res. 2008;61:113–9.

    Article  PubMed  CAS  Google Scholar 

  37. Baydas G, Nedzvetskii VS, Nerush PA, Kirichenko SV, Yoldas T. Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci. 2003;73:1907–16.

    Article  PubMed  CAS  Google Scholar 

  38. Hasanein P, Shahidi S. Effects of combined treatment with vitamins C and E on passive avoidance learning and memory in diabetic rats. Neurobiol Learn Mem. 2010;93:472–8.

    Article  PubMed  CAS  Google Scholar 

  39. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

    Article  PubMed  CAS  Google Scholar 

  40. Wills ED. Mechanisms of lipid peroxide formation in animal tissues. Biochem J. 1966;99:667–76.

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenze induced liver necrosis: Protective role of glutathione and evidence for 3,4-bromobenzenoxide as the hepatotoxic intermediate. Pharmacol. 1974;11:151–69.

    Article  CAS  Google Scholar 

  42. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978;186:189–95.

    Article  PubMed  CAS  Google Scholar 

  43. Claiborne A. Catalase activity. In: Greenwald RA, Raton B, editors. Handbook of methods for oxygen radical research. Florida: CRC Press; 1985. p. 283–4.

    Google Scholar 

  44. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126:131–8.

    Article  PubMed  CAS  Google Scholar 

  45. Liu Y, Liu H, Yang J, Liu X, Lu S, Wen T, et al. Increased amyloid β-peptide (1–40) level in brain of streptozotocin-induced diabetic rats. Neuroscience. 2008;153:796–802.

    Article  PubMed  CAS  Google Scholar 

  46. Hong H, Liu LP, Liao JM, Wang TS, Ye FY, Wu J, et al. Downregulation of LPR1 at the blood–brain barrier in streptozotocin-induced diabetic mice. Neuropharmacol. 2009;56:1054–59.

    Article  CAS  Google Scholar 

  47. Roriz-Filho JS, Sa-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves MLF, et al. (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta. 2009;1792:432–43.

    Article  CAS  Google Scholar 

  48. Sima AAF. Encephalopathies: The emerging diabetic complications. Acta Diabetol. 2010;47:279–93.

    Article  PubMed  CAS  Google Scholar 

  49. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    Article  PubMed  CAS  Google Scholar 

  50. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002;5:561–8.

    Article  PubMed  CAS  Google Scholar 

  51. Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. Biochim Biophys Acta. 2001;1504:196–219.

    Article  PubMed  CAS  Google Scholar 

  52. Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci. 2004;11:397–402.

    Article  PubMed  CAS  Google Scholar 

  53. Tuzcu M, Baydas G. Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol. 2006;537:106–10.

    Article  PubMed  CAS  Google Scholar 

  54. Kamboj SS, Chopra K, Sandhir R. Neuroprotective effect of N-acetylcysteine in the development of diabetic encephalopathy in streptozotocin-induced diabetes. Metab Brain Dis. 2008;23:427–43.

    Article  PubMed  CAS  Google Scholar 

  55. Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, et al. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res. 2011;220:30–41.

    Article  PubMed  CAS  Google Scholar 

  56. Meot-Duros L, Magne C. Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol Biochem. 2009;47:37–41.

    Article  PubMed  CAS  Google Scholar 

  57. Bhutada P, Mundhada Y, Bansod K, Bhutada C, Tawari S, Dixit P, et al. Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiol Learn Mem. 2010;94:293–302.

    Article  PubMed  CAS  Google Scholar 

  58. Bolanos JP, Garcia-Nogales P, Vega-Agapito V, Delgado-Esteban M, Cidal P, Almeida A. Nitric oxide-mediated mitochondrial impairment in neural cells: a role for glucose metabolism in neuroprotection. Prog Brain Res. 2001;132:441–54.

    Article  PubMed  CAS  Google Scholar 

  59. Tran HM, Yamada K, Olariu A, Mizuno M, Ren XH, Nabeshima T. Amyloid β-peptide induces nitric oxide production in rat hippocampus: Association with cholinergic dysfunction and amelioration by inducible nitric oxide synthase inhibitors. FASEBJ. 2001;15:1407–9.

    CAS  Google Scholar 

  60. Comin D, Gazarini L, Zanoni JN, Milani H, de Oliveira RMW. Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav Brain Res. 2010;210:38–45.

    Article  PubMed  CAS  Google Scholar 

  61. Bolanos JP, Cidad P, Garcia-Nogales P, Delgado-Esteban M, Fernandez E, Almeida A. Regulation of glucose metabolism by nitrosative stress in neural cells. Mol Aspects Med. 2004;25:61–73.

    Article  PubMed  CAS  Google Scholar 

  62. Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA. Oxidative damage to mitochondrial complex I Due to peroxynitrite. J Biol Chem. 2003;278:37223–30.

    Article  PubMed  CAS  Google Scholar 

  63. Sima AAF, Zhang W, Kreipke CW, Rafols JA, Hoffman WH. Inflammation in diabetic encephalopathy is prevented by C-peptide. Rev Diabet Stud. 2009;6:37–42.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Satoh J, Yagihashi S, Toyota T. The possible role of tumor necrosis factor-α in diabetic polyneuropathy. Exp Diabesity Res. 2003;4:65–71.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Brands AMA, Kessels RPC, de Haan EHF, Kappelle LJ, Biessels GJ. Cerebral dysfunction in type 1 diabetes: Effects of insulin, vascular risk factors and blood-glucose levels. Eur J Pharmacol. 2004;490:159–68.

    Article  PubMed  CAS  Google Scholar 

  66. Sharma S, Chopra K, Kulkarni SK. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother Res. 2007;21:278–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Tamilnadu Pharmaceutical Sciences Welfare Trust, Chennai, India, supported this work with Scholarship.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Y. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, M.Y., Vadivelan, R., Dhanabal, S.P. et al. Anti-oxidant, anti-inflammatory and anti-cholinergic action of Adhatoda vasica Nees contributes to amelioration of diabetic encephalopathy in rats: Behavioral and biochemical evidences. Int J Diabetes Dev Ctries 34, 24–31 (2014). https://doi.org/10.1007/s13410-013-0145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-013-0145-z

Keywords

Navigation