Skip to main content

Advertisement

Log in

Fluorescent resonance energy transfer of organic fluorescent dyes with gold nanoparticles and their analytical application

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

We report five effective fluorescence resonance energy transfer (FRET) systems based on gold nanoparticles (AuNPs) and organic fluorescent dyes, including ionic [fluorescein sodium (FS) and Eosin B (EB)] and cationic [rhodamine 6G (Rh6G), acridine orange (AO), and safranine T (ST)] fluorescent dyes. The fluorescence intensity of the five FRET systems demonstrates that efficient quenching is possible. The quenching efficiencies of Rh6G and FS by FRET were nearly 100%, 89% for AO, 60% for EB, and 55% for ST. A series of UV absorbance spectra and fluorescence emission spectra were used to explain the mechanism of fluorescence quenching. We found that there were different degrees of overlap between the absorption spectrum of the AuNPs and the emission spectrum of fluorescence dyes. This outcome indicates that highly efficient FRET is the possible mechanism of fluorescence quenching. We applied the FRET system to establish a sensitive and simple strategy for the determination of mercury (Hg2+). The maximum excitation was at 523 nm (λex = 523 nm). The enhanced fluorescence intensity at 551 nm was proportional to the concentration of Hg2+ with a range of 0.44–100 nmol L−1. The detection limit was 0.13 nM. The linear regression equation was ΔF = 27.05c (nmol L−1) − 79.88, and the regression coefficient was 0.9954. The proposed method has high sensitivity and convenience and does not require complex and expensive instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amjadi M, Farzampour L (2014) Fluorescence quenching of fluoroquinolones by gold nanoparticles with different sizes and its analytical application. J Lumin 145(1):263–268. https://doi.org/10.1016/j.jlumin.2013.07.055

    Article  CAS  Google Scholar 

  2. Botasini S, Heijo G, Méndez E (2013) Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies. Anal Chim Acta 800(19):1–11. https://doi.org/10.1016/j.aca.2013.07.067

    Article  CAS  Google Scholar 

  3. Carrettin S, Blanco MC, Corma A, Hashmi AS (2006) Heterogeneous gold catalysed synthesis of phenols. Adv Synth Catal 348(10–11):1283–1288. https://doi.org/10.1002/adsc.200606099

    Article  CAS  Google Scholar 

  4. Chen J, Zheng A, Chen A, Gao Y, He C, Kai X, Wu G, Chen Y (2007) A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples. Anal Chim Acta 599(1):134–142. https://doi.org/10.1016/j.aca.2007.07.074

    Article  CAS  Google Scholar 

  5. Dykman LA, Khlebtsov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 3(2):34–55

    CAS  Google Scholar 

  6. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Eng 49(19):3280–3294. https://doi.org/10.1002/anie.200904359

    Article  CAS  Google Scholar 

  7. Hashmi AS (2007) Gold-catalyzed organic reactions. Chem Rev 107:3180–3211. https://doi.org/10.1021/cr000436x

    Article  CAS  Google Scholar 

  8. Hashmi AS, Blanco MC, Fischer D, Bats JW (2006) Gold catalysis: evidence for the in-situ reduction of gold(III) during the cyclization of allenyl carbinols. Eur J Org Chem 6:1387–1389. https://doi.org/10.1002/ejoc.200600009

    Article  CAS  Google Scholar 

  9. Hashmi AS, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45(47):7896–7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  10. Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ (2016) A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron 78:315–320. https://doi.org/10.1016/j.bios.2015.11.043

    Article  CAS  Google Scholar 

  11. Lin F, Gui EC, Wen W, Bao T, Zhang XH, Wang SF (2016) Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of grapheme quantum dots. Talanta 158:292–298. https://doi.org/10.1016/j.talanta.2016.05.062

    Article  CAS  Google Scholar 

  12. Liu J, Guan Z, Lv Z, Jiang X, Yang S, Chen A (2014) Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Biosens Bioelectron 52(2):265–270. https://doi.org/10.1016/j.bios.2013.08.059

    Article  CAS  Google Scholar 

  13. Liu YY, Li HC, Guo B, Wei LJ, Chen B, Zhang YY (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734–740. https://doi.org/10.1016/j.bios.2017.01.020

    Article  CAS  Google Scholar 

  14. Liu Y, Lv X (2012) A naphthalimide–rhodamine ratiometric fluorescent probe for Hg2+ based on fluorescence resonance energy transfer. Dyes Pigments 92(3):909–915. https://doi.org/10.1016/j.dyepig.2011.07.020

    Article  CAS  Google Scholar 

  15. Luan YX, Xu GY, Li YM, Sun CX, Song SE, Liu J (2005) Studies on aggregation of AOT and NaDEHP via the energy transfer between AO and RB molecules. Dyes Pigments 67(3):223–228. https://doi.org/10.1016/j.dyepig.2004.12.004

    Article  CAS  Google Scholar 

  16. Pyne S, Sahoo GP, Bhui DK, Bar H, Sarkar P, Maity A, Misra A (2011) FRET based ultra sensor for detection of hg (II) in water: a comparative study using citrate and marcapto propanoic acid as stabilizer of AuNPs. Sensors Actuators B Chem 160(1):1141–1148. https://doi.org/10.1016/j.snb.2011.09.039

    Article  CAS  Google Scholar 

  17. Saha J, Dey D, Roy AD, Bhattacharjee D, Hussain SA (2016) Multi step FRET among three laser dyes pyrene acriflavine and rhodamine B. J Lumin 172:168–174. https://doi.org/10.1016/j.jlumin.2015.12.004

    Article  CAS  Google Scholar 

  18. Saha J, Roy AD, Dey D, Chakraborty S, Bhattacharjee D, Paul PK, Hussain SA (2015) Investigation of fluorescence resonance energy transfer between fluorescein and rhodamine 6G. Spectrochim Acta A Mol Biomol Spectrosc 149:143–149. https://doi.org/10.1016/j.saa.2015.04.027

    Article  CAS  Google Scholar 

  19. Tan D, He Y, Xing X, Zhao Y, Tang H, Pang D (2013) Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution. Talanta 113(6):26–30. https://doi.org/10.1016/j.talanta.2013.03.055

    Article  CAS  Google Scholar 

  20. Tan L, Neoh KG, Kang ET, Choe WS, Su XD (2012) Affinity analysis of DNA aptamer–peptide interactions using gold nanoparticles. Anal Biochem 421(2):725–731. https://doi.org/10.1016/j.ab.2011.12.007

    Article  CAS  Google Scholar 

  21. Verma S, Rao BT, Srivastava AK, Patel HS, Satapathy S, Joshi MP, Sahu VK, Kukreja LM (2014) Studies on interdependent optical properties of Rhodamine 6G dye and gold nanoparticles at different dilutions of aqueous solutions. J Lumin 155(6):156–164. https://doi.org/10.1016/j.jlumin.2014.06.034

    Article  CAS  Google Scholar 

  22. Versiani AF, Andrade LM, Martins EM, Scalzo S, Geraldo JM, Chaves CR, Ferreira DC, Ladeina M, Guatimosim S, Ladeira LO, Fonseca FG (2016) Gold nanoparticles and their applications in biomedicine. Futur Virol 11(4):293–309. https://doi.org/10.2217/fvl-2015-0010

    Article  CAS  Google Scholar 

  23. Wang JC, Wang YS, Rang WQ, Xue JH, Zhou B, Liu L, Qian QM, Wang YS, Yin JC (2014) Colorimetric determination of 8-hydroxy–2′-deoxyguanosine using label-free aptamer and unmodified gold nanoparticles. Microchim Acta 181(9–10):903–910. https://doi.org/10.1007/s00604-014-1173-1

    Article  CAS  Google Scholar 

  24. Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb(2+) and Hg(2+). Talanta 128(4):327–336. https://doi.org/10.1016/j.talanta.2014.04.056

    Article  CAS  Google Scholar 

  25. Xia N, Zhou BB, Huang NB, Jiang MS, Zhang JB, Liu L (2016) Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens Bioelectron 85:625–632. https://doi.org/10.1016/j.bios.2016.05.066

    Article  CAS  Google Scholar 

  26. Xu J, Yu H, Hu Y, Chen MZ, Shao SJ (2016) A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells. Biosens Bioelectron 75:1–7. https://doi.org/10.1016/j.bios.2015.08.007

    Article  CAS  Google Scholar 

  27. Yang C, Wang Y, Marty JL, Yang X (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26(5):2724–2727. https://doi.org/10.1016/j.bios.2010.09.032

    Article  CAS  Google Scholar 

  28. Zhang JQ, Wang YS, Xue JH, He Y, Yang HX, Liang J, Shi LF, Xiao XL (2012) A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence-“turning on” mechanism. J Pharm Biomed Anal 70(2):362–368. https://doi.org/10.1016/j.jpba.2012.05.032

    Article  CAS  Google Scholar 

  29. Zhu W, Xuan C, Liu GL, Chen Z, Wang WA (2015) Label-free fluorescent biosensor for determination of bovine serum albumin and calf thymus DNA based on gold nanorods coated with acridine orange-loaded mesoporous silica. Sensors Actuators B Chem 220:302–308. https://doi.org/10.1016/j.snb.2015.05.100

    Article  CAS  Google Scholar 

Download references

Funding

This study received a financial support from the National Natural Science Foundation of China (No. 81502850), the Natural Science Foundation of Hunan Province in China (No. 2015JJ2122), and Research study and innovative experiment program for college students in Hunan (No. 336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

ESM 2

(DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Chen, YT., Zhen, XL. et al. Fluorescent resonance energy transfer of organic fluorescent dyes with gold nanoparticles and their analytical application. Gold Bull 51, 145–151 (2018). https://doi.org/10.1007/s13404-018-0240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-018-0240-5

Keywords

Navigation