Skip to main content

Advertisement

Log in

NK cells as powerful therapeutic tool in cancer immunotherapy

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results.

Conclusion

This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data obtained and/or analyzed in this study were available from the corresponding author upon reasonable request.

Abbreviations

5T4:

Trophoblast glycoprotein

ADCC:

Antibody-dependent cytotoxicity

ALL:

Acute lymphoblastic leukemia

AKT:

Protein kinase B

AML:

Acute myeloid leukemia

B7-H6:

B7 homolog 6

BAT3:

HLA-B associated transcript 3

BCMA:

B cell maturation antigen

BiKE:

Bi-specific NK cell engagers

C1q:

Complement component 1q

CAR:

Chimeric antigen receptor

CCL:

Chemokine (C-C motif) ligand

CD:

Cluster of differentiation

CEA:

Carcinoembryonic antigen

CEACAM1:

Carcinoembryonic antigen-associated cell adhesion molecule-1

CFP:

Complement factor P

CLL:

Chronic lymphocytic leukemia

CLL1:

C-type lectin-like molecule-1

CIML NK:

Cytokine-induced memory-like NK cell

CISH:

Cytokine-inducible SH2-containing protein

CMV:

CytoMegalo Virus

CR:

Complete response

CRACC:

CD2-like receptor-activating cytotoxic cell

CRS:

Cytokine release syndrome

CRTAM:

Cytotoxic and regulatory T cell molecule

CT26:

Colon tumor 26

CTL:

Cytotoxic T lymphocyte

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

DC:

Dendritic cell

DLIs:

Donor lymphocyte infusions

DLL3:

Delta-like ligand-3

DNAM1:

DNAX accessory molecule-1

DSGb5:

Disialosylglobopentaose

EGFR:

Epidermal growth factor receptor

Epa:

Epithelial adhesin

ERK:

Extracellular signal-regulated kinase

ESC:

Embryonic stem cell

EV:

Extracellular Vesicle

FcγRIIIA:

Fc gamma receptor IIIA

FGL1:

Fibrinogen-like protein 1

FOXO1:

Forkhead box protein O1

GD:

Ganglioside

GNLY:

Granulysin

GzmA/B:

Granzyme A/B

HA:

Hemagglutinin

HCMV:

Human Cytomegalovirus

HN:

Hemagglutinin-neuraminidase

HNSCC:

Head and neck squamous cell carcinoma

HSPG:

Heparan sulfate proteoglycans

FasL:

Fas ligand

FDA:

Food and drug administration

FGL1:

Fibrinogen-like protein 1

FLT3L:

FMS-like tyrosine kinase 3 receptor ligand

Foxo1:

Forkhead box protein O1

Gal9:

Galectin 9

GBM:

Glioblastoma multiforme

GM-CSF:

Granulocyte-macrophage colony stimulating factor

GVHD:

Graft-versus-host disease

haNK cell:

High-affinity NK cell

HCC:

Hepatocellular carcinoma

HCT:

Hematopoietic cell transplantation

HER2:

Human epidermal growth factor receptor 2

HIF:

Hypoxia-inducible factor

HLA:

Human leukocyte antigen

HMGB1:

High mobility group protein 1

HNSCC:

Head and neck squamous cell carcinoma

HSPCs:

Hematopoietic stem cells

HSPG:

Heparan sulfate proteoglycan

IgV:

Immunoglobulin variable region

LAG3:

Lymphocyte activation gene 3

LAIR-1:

Leucocyte-associated immunoglobulin-like receptor-1

LIRs:

Leukocyte immunoglobulin-like receptors

LLT-1:

Lectin-like transcript 1

LSECtin:

Liver sinusoidal endothelial cell lectin

ICI:

Immune checkpoint inhibitor

IFN:

Interferon

IL:

Interleukin

ILT2:

Ig-like transcript 2

IRp60:

Inhibitory receptor protein 60

iPSCs:

Induced Pluripotent stem cells

irAEs:

Immune-related adverse events

ITIM:

Immunoreceptor tyrosine inhibitory motif

JAK:

Janus kinase

KIR:

The killer cell immunoglobulin-like receptor

KLRG1:

Co-inhibitory receptor killer-cell lectin like receptor G1

LAG-3:

Lymphocyte activation gene-3

mAb:

Monoclonal Antibody

mAGP:

Mycolyl-arabinogalactan-peptidoglycan

MAPK:

Mitogen-activated protein kinase

MDS:

Myelodysplastic syndromes

MDSC:

Myeloid-derived suppressor cell

METTL3:

Methyltransferase-like 3

MICA:

MHC class I polypeptide-related sequence A

MICB:

MHC class I polypeptide-related sequence B

MHC:

Major histocompatibility complex

MLL5:

Mixed lineage leukemia 5

MM:

Multiple myeloma

MSLN:

Mesothelin

MUC:

Mucin

mTOR:

Mammalian target of rapamycin

NCRs:

Natural cytotoxicity receptors

NECL2:

Nectin-like protein 2

NEJM:

New England Journal of Medicine

NETs:

Neutrophil extracellular traps

NHL:

Non-Hodgkin lymphoma

NID1:

Nidogen-1

NKCE:

NK cell engagers

NK cell:

Natural killer cell

NKG2:

Nature-killer group 2

NKP:

NK precursor cells

NKp30/44/46:

Natural cytotoxicity receptor 30/44/46

NKRP1A:

Natural killer cell receptor-P1A

NSCLC:

Non-small cell lung cancer

NTB-A:

NK-T-B-antigen

oHSV:

Oncolytic herpes simplex virus

OV:

Oncolytic virus

PBMCs:

Peripheral blood mononuclear cells

PCNA:

Proliferating cell nuclear antigen

PD-1:

Programmed cell death protein 1

PDGF:

Platelet-derived growth factor

PE:

Phosphatidylethanolamine

PfEMP-1:

Plasmodium falciparum erythrocyte membrane protein 1

PFN:

Perforin

PI3K:

Phosphoinositide 3-kinase

PGE2:

Prostaglandin E2

PS:

Phosphatidylserine

PSCA:

Prostate stem cell antigen

PSMA:

Prostate specific membrane antigen

Ptdser:

Phospholipid serine

PVR:

Poliovirus receptor

PVRL2:

Poliovirus receptor related2

rhIL-15:

Recombinant human interleukin-15

ROBO1:

Roundabout guidance receptor 1

SCF:

Stem cell factor

scFv:

Single-chain variable fragment

SHP:

Src homology region 2 domain-containing phosphatase

Siglec:

Sialic acid-binding immunoglobulin-like lectins

siRNA:

Small interfering RNA

STAT1:

Signal transducer and activator of transcription 1

TCRs:

T-cell receptors

TIGIT:

T-cell immunoreceptor with Ig and ITIM domains

TIM-3:

T cell immunoglobulin domain and mucin domain-containing protein 3

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

TRAIL:

Tumor necrosis factor-associated apoptosis-inducing ligand

TriKE:

Tri-specific NK cell engagers

UCB:

Umbilical cord blood

ULBP:

UL16-binding protein

VAP-1:

Vascular adhesion protein-

VEGFR2:

Vascular endothelial growth factor receptor 2

References

  1. D. Hanahan, Hallmarks of Cancer: New dimensions. Cancer Discov. 12, 31–46 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. A.K. Singh, J.P. McGuirk, CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 21, e168–e178 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. S. Bagchi, R. Yuan, E.G. Engleman, Immune Checkpoint inhibitors for the treatment of Cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. O. Demaria, S. Cornen, M. Daëron, Y. Morel, R. Medzhitov, E. Vivier, Harnessing innate immunity in cancer therapy. Nature. 574, 45–56 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Yang, Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125, 3335–3337 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  6. A. Kumar, C.A. Swain, L.A. Shevde, Informing the new developments and future of cancer immunotherapy. Cancer Metastasis Rev. 40, 549–562 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. M.G. Morvan, L.L. Lanier, NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer. 16, 7–19 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. T. Timonen, J.R. Ortaldo, R.B. Herberman, Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J. Exp. Med. 153, 569–582 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Anft, P. Netter, D. Urlaub, I. Prager, S. Schaffner, C. Watzl, NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell. Mol. Immunol. 17, 347–355 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. F. Fang, S. Xie, M. Chen, Y. Li, J. Yue, J. Ma et al., Advances in NK cell production. Cell. Mol. Immunol. 19, 460–481 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M.A. Caligiuri, Human natural killer cells. Blood. 112, 461–469 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C. Fauriat, E.O. Long, H.-G. Ljunggren, Y.T. Bryceson, Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 115, 2167–2176 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Yu, A.G. Freud, M.A. Caligiuri, Location and cellular stages of NK cell development. Trends Immunol. 34 (2013). https://doi.org/10.1016/j.it.2013.07.005

  14. P. Dogra, C. Rancan, W. Ma, M. Toth, T. Senda, D.J. Carpenter et al., Tissue determinants of human NK Cell Development, function, and Residence. Cell. 180, 749–763e13 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. E. Vivier, D.H. Raulet, A. Moretta, M.A. Caligiuri, L. Zitvogel, L.L. Lanier et al., Innate or adaptive immunity? The Example of Natural Killer cells. Science. 331, 44–49 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Kumar, Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology. 154, 383–393 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. F. Nimmerjahn, J.V. Ravetch, Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. J.S. Orange, Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol. 8, 713–725 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. I. Prager, C. Watzl, Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. M.J. Smyth, E. Cretney, J.M. Kelly, J.A. Westwood, S.E.A. Street, H. Yagita et al., Activation of NK cell cytotoxicity. Mol. Immunol. 42, 501–510 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. I. Prager, C. Liesche, van H. Ooijen, D. Urlaub, Q. Verron, N. Sandström et al., NK cells switch from granzyme B to death receptor–mediated cytotoxicity during serial killing. J. Exp. Med. 216, 2113–2127 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. Piccioli, S. Sbrana, E. Melandri, N.M. Valiante, Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. B. Cózar, M. Greppi, S. Carpentier, E. Narni-Mancinelli, L. Chiossone, E. Vivier, Tumor-infiltrating natural killer cells. Cancer Discov. 11, 34–44 (2021)

    Article  PubMed  Google Scholar 

  24. E. Schlecker, N. Fiegler, A. Arnold, P. Altevogt, S. Rose-John, G. Moldenhauer et al., Metalloprotease-mediated Tumor Cell Shedding of B7-H6, the ligand of the natural killer cell–activating receptor NKp30. Cancer Res. 74, 3429–3440 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. F. Ghiringhelli, C. Ménard, M. Terme, C. Flament, J. Taieb, N. Chaput et al., CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J. Exp. Med. 202, 1075–1085 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Á. Teijeira, S. Garasa, M. Gato, C. Alfaro, I. Migueliz, A. Cirella et al., CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce Neutrophil Extracellular traps that interfere with Immune cytotoxicity. Immunity. 52, 856–871e8 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. X. Zheng, Y. Qian, B. Fu, D. Jiao, Y. Jiang, P. Chen et al., Mitochondrial fragmentation limits NK cell-based Tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. J. Ni, X. Wang, A. Stojanovic, Q. Zhang, M. Wincher, L. Bühler et al., Single-cell RNA sequencing of Tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK Cell activity. Immunity. 52, 1075–1087e8 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. S.E. Keating, V. Zaiatz-Bittencourt, R.M. Loftus, C. Keane, K. Brennan, D.K. Finlay et al., Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J. Immunol. 196, 2552–2560 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. M.G. Badur, C.M. Metallo, Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human Disease. Metab. Eng. 45, 95–108 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. C.-H. Chang, J. Qiu, D. O’Sullivan, M.D. Buck, T. Noguchi, J.D. Curtis et al., Metabolic competition in the Tumor Microenvironment is a driver of Cancer Progression. Cell. 162, 1229–1241 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R.M. Loftus, N. Assmann, N. Kedia-Mehta, K.L. O’Brien, A. Garcia, C. Gillespie et al., Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  33. X. Zheng, Z. Hou, Y. Qian, Y. Zhang, Q. Cui, X. Wang et al., Tumors evade immune cytotoxicity by altering the surface topology of NK cells. Nat. Immunol. 24, 802–813 (2023)

    Article  CAS  PubMed  Google Scholar 

  34. X. Michelet, L. Dyck, A. Hogan, R.M. Loftus, D. Duquette, K. Wei et al., Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. C. Harmon, M.W. Robinson, F. Hand, D. Almuaili, K. Mentor, D.D. Houlihan et al., Lactate-mediated acidification of Tumor Microenvironment induces apoptosis of Liver-Resident NK cells in Colorectal Liver Metastasis. Cancer Immunol. Res. 7, 335–346 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. D.J. Propper, F.R. Balkwill, Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. N.W. Zwirner, C.I. Domaica, Cytokine regulation of natural killer cell effector functions. BioFactors. 36, 274–288 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. R. Spolski, P. Li, W.J. Leonard, Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648–659 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. W. Domzig, B.M. Stadler, R.B. Herberman, Interleukin 2 dependence of human natural killer (NK) cell activity. J. Immunol. 130, 1970–1973 (1983)

    Article  CAS  PubMed  Google Scholar 

  40. J.P. Siegel, R.K. Puri, Interleukin-2 toxicity. J. Clin. Oncol. 9, 694–704 (1991)

    Article  CAS  PubMed  Google Scholar 

  41. K.E. Harris, K.J. Lorentsen, H.K. Malik-Chaudhry, K. Loughlin, H.M. Basappa, S. Hartstein et al., A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells. Sci. Rep. 11, 10592 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. A.M. Levin, D.L. Bates, A.M. Ring, C. Krieg, J.T. Lin, L. Su et al., Exploiting a natural conformational switch to engineer an Interleukin-2 superkine. Nature. 484, 529–533 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. N. Arenas-Ramirez, C. Zou, S. Popp, D. Zingg, B. Brannetti, E. Wirth et al., Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl Med. 8, 367ra166 (2016)

    Article  PubMed  Google Scholar 

  44. J.L. Ptacin, C.E. Caffaro, L. Ma, K.M. San Jose Gall, H.R. Aerni, N.V. Acuff et al., An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat. Commun. 12, 4785 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Becknell, M.A. Caligiuri, Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv. Immunol. 86, 209–239 (2005)

    Article  CAS  PubMed  Google Scholar 

  46. J.G. Giri, D.M. Anderson, S. Kumaki, L.S. Park, K.H. Grabstein, D. Cosman, IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J. Leukoc. Biol. 57, 763–766 (1995)

    Article  CAS  PubMed  Google Scholar 

  47. A.K. Ali, N. Nandagopal, S.-H. Lee, IL-15-PI3K-AKT-mTOR: a critical pathway in the Life Journey of Natural Killer cells. Front. Immunol. 6, 355 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  48. X. Zhou, J. Yu, X. Cheng, B. Zhao, G.C. Manyam, L. Zhang et al., The deubiquitinase Otub1 controls the activation of CD8 + T cells and NK cells by regulating IL-15-mediated priming. Nat. Immunol. 20, 879–889 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Wang, Y. Zhang, P. Yi, W. Dong, A.P. Nalin, J. Zhang et al., The IL-15-AKT-XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat. Immunol. 20, 10–17 (2019)

    Article  CAS  PubMed  Google Scholar 

  50. K. Imada, E.T. Bloom, H. Nakajima, J.A. Horvath-Arcidiacono, G.B. Udy, H.W. Davey et al., Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J. Exp. Med. 188, 2067–2074 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. H. Song, J. Song, M. Cheng, M. Zheng, T. Wang, S. Tian et al., METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat. Commun. 12, 5522 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M. Zhang, B. Wen, O.M. Anton, Z. Yao, S. Dubois, W. Ju et al., IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc. Natl. Acad. Sci. U S A 115, E10915–E10924 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Y. Guo, L. Luan, N.K. Patil, E.R. Sherwood, Immunobiology of the IL-15-IL-15Rα complex as an Antitumor and Antiviral Agent. Cytokine Growth Factor Rev. 38, 10–21 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S. Zhang, J. Zhao, X. Bai, M. Handley, F. Shan, Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int. Immunopharmacol. 91, 107318 (2021)

    Article  CAS  PubMed  Google Scholar 

  55. S. Cooley, F. He, V. Bachanova, G.M. Vercellotti, T.E. DeFor, J.M. Curtsinger et al., First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute Myeloid Leukemia. Blood Adv. 3, 1970–1980 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. K.M. Knudson, J.W. Hodge, J. Schlom, S.R. Gameiro, Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opin. Biol. Ther. 20, 705–709 (2020)

    Article  PubMed  Google Scholar 

  57. K. Margolin, C. Morishima, V. Velcheti, J.S. Miller, S.M. Lee, A.W. Silk et al., Phase I Trial of ALT-803, a novel recombinant IL15 complex, in patients with Advanced Solid tumors. Clin. Cancer Res. 24, 5552–5561 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J.M. Wrangle, V. Velcheti, M.R. Patel, E. Garrett-Mayer, E.G. Hill, J.G. Ravenel et al., ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell Lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. J.A. Hangasky, W. Chen, S.P. Dubois, A. Daenthanasanmak, J.R. Müller, R. Reid et al., A very long-acting IL-15: implications for the immunotherapy of cancer. J. Immunother Cancer. 10, e004104 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  60. M. Patidar, N. Yadav, S.K. Dalai, Interleukin 15: a key cytokine for immunotherapy. Cytokine Growth Factor Rev. 31, 49–59 (2016)

    Article  PubMed  Google Scholar 

  61. S.A. Perez, L.G. Mahaira, P.A. Sotiropoulou, A.D. Gritzapis, E.G. Iliopoulou, D.K. Niarchos et al., Effect of IL-21 on NK cells derived from different umbilical cord blood populations. Int. Immunol. 18, 49–58 (2006)

    Article  CAS  PubMed  Google Scholar 

  62. J. Parrish-Novak, S.R. Dillon, A. Nelson, A. Hammond, C. Sprecher, J.A. Gross et al., Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 408, 57–63 (2000)

    Article  CAS  PubMed  Google Scholar 

  63. K. Skak, K.S. Frederiksen, D. Lundsgaard, Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology. 123, 575–583 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. H. Seo, I. Jeon, B.-S. Kim, M. Park, E.-A. Bae, B. Song et al., IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat. Commun. 8, 15776 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Khan, S. Arooj, H. Wang, NK Cell-based Immune Checkpoint Inhibition. Front. Immunol. 11, 167 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. G. Morad, B.A. Helmink, P. Sharma, J.A. Wargo, Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 184, 5309–5337 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. N. Stanietsky, H. Simic, J. Arapovic, A. Toporik, O. Levy, A. Novik et al., The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. U S A 106, 17858–17863 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. K.B. Lupo, S. Matosevic, CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J. Hematol. Oncol. 13, 76 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Q. Zhang, J. Bi, X. Zheng, Y. Chen, H. Wang, W. Wu et al., Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018)

    Article  CAS  PubMed  Google Scholar 

  70. G. Liu, Q. Zhang, J. Yang, X. Li, L. Xian, W. Li et al., Increased TIGIT expressing NK cells with dysfunctional phenotype in AML patients correlated with poor prognosis. Cancer Immunol. Immunother. 71, 277–287 (2022)

    Article  CAS  PubMed  Google Scholar 

  71. L. Martinet, M.J. Smyth, Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 15, 243–254 (2015)

    Article  CAS  PubMed  Google Scholar 

  72. B.C. Cho, D.R. Abreu, M. Hussein, M. Cobo, A.J. Patel, N. Secen et al., Tiragolumab plus Atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell Lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23, 781–792 (2022)

    Article  CAS  PubMed  Google Scholar 

  73. Tiragolumab Results Cast Shadow on TIGIT Pipeline, Cancer Discov. 12, 1603–1604 (2022)

    Google Scholar 

  74. F. Borrego, M. Masilamani, J. Kabat, T.B. Sanni, J.E. Coligan, The cell biology of the human natural killer cell CD94/NKG2A inhibitory receptor. Mol. Immunol. 42, 485–488 (2005)

    Article  CAS  PubMed  Google Scholar 

  75. L. Borst, van der S.H. Burg, van T. Hall, The NKG2A–HLA-E Axis as a Novel checkpoint in the Tumor Microenvironment. Clin. Cancer Res. 26, 5549–5556 (2020)

    Article  CAS  PubMed  Google Scholar 

  76. C. Sun, J. Xu, Q. Huang, M. Huang, H. Wen, C. Zhang et al., High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with Liver cancer. Oncoimmunology. 6, e1264562 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  77. E.M. McWilliams, J.M. Mele, C. Cheney, E.A. Timmerman, F. Fiazuddin, E.J. Strattan et al., Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic Leukemia. Oncoimmunology. 5, e1226720 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  78. P. André, C. Denis, C. Soulas, C. Bourbon-Caillet, J. Lopez, T. Arnoux et al., Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK Cells. Cell. 175, 1731–1743e13 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  79. A.V. Tinker, H.W. Hirte, D. Provencher, M. Butler, H. Ritter, D. Tu et al., Dose-ranging and cohort-expansion study of Monalizumab (IPH2201) in patients with Advanced Gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): IND221. Clin. Cancer Res. 25, 6052–6060 (2019)

    Article  CAS  PubMed  Google Scholar 

  80. N.H. Segal, J. Naidoo, G. Curigliano, S. Patel, S. Sahebjam, K.P. Papadopoulos et al., First-in-human dose escalation of monalizumab plus durvalumab, with expansion in patients with metastatic microsatellite-stable Colorectal cancer. JCO. 36, 3540–3540 (2018)

    Article  Google Scholar 

  81. C. Zhu, A.C. Anderson, A. Schubart, H. Xiong, J. Imitola, S.J. Khoury et al., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005)

    Article  CAS  PubMed  Google Scholar 

  82. Y. Wolf, A.C. Anderson, V.K. Kuchroo, TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020)

    Article  CAS  PubMed  Google Scholar 

  83. R. Yang, L. Sun, C.-F. Li, Y.-H. Wang, J. Yao, H. Li et al., Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 12, 832 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. M. Das, C. Zhu, V.K. Kuchroo, Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev. 276, 97–111 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. L.C. Ndhlovu, S. Lopez-Vergès, J.D. Barbour, R.B. Jones, A.R. Jha, B.R. Long et al., Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood. 119, 3734–3743 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. da I.P. Silva, A. Gallois, S. Jimenez-Baranda, S. Khan, A.C. Anderson, V.K. Kuchroo et al., Reversal of NK cell exhaustion in advanced Melanoma by Tim-3 blockade. Cancer Immunol. Res. 2, 410–422 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  87. L. Xu, Y. Huang, L. Tan, W. Yu, D. Chen, C. Lu et al., Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int. Immunopharmacol. 29, 635–641 (2015)

    Article  CAS  PubMed  Google Scholar 

  88. S. Tan, Y. Xu, Z. Wang, T. Wang, X. Du, X. Song et al., Tim-3 hampers Tumor Surveillance of Liver-Resident and Conventional NK cells by disrupting PI3K signaling. Cancer Res. 80, 1130–1142 (2020)

    Article  CAS  PubMed  Google Scholar 

  89. O. Demaria, L. Gauthier, G. Debroas, E. Vivier, Natural killer cell engagers in cancer immunotherapy: next generation of immuno-oncology treatments. Eur. J. Immunol. 51, 1934–1942 (2021)

    Article  CAS  PubMed  Google Scholar 

  90. L.N. Kerbauy, N.D. Marin, M. Kaplan, P.P. Banerjee, M.M. Berrien-Elliott, M. Becker-Hapak et al., Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood-derived NK cells facilitates CAR-like responses against CD30 + malignancies. Clin. Cancer Res. 27, 3744–3756 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. A. Rothe, S. Sasse, M.S. Topp, D.A. Eichenauer, H. Hummel, K.S. Reiners et al., A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin Lymphoma. Blood. 125, 4024–4031 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. N.L. Bartlett, A.F. Herrera, E. Domingo-Domenech, A. Mehta, A. Forero-Torres, R. Garcia-Sanz et al., A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin Lymphoma. Blood. 136, 2401–2409 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. C. Zhang, J. Röder, A. Scherer, M. Bodden, J. Pfeifer Serrahima, A. Bhatti et al., Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. J. Immunother Cancer. 9, e002980 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  94. Y. Wang, H. Li, W. Xu, M. Pan, C. Qiao, J. Cai et al., BCMA-targeting bispecific antibody that simultaneously stimulates NKG2D-enhanced efficacy against Multiple Myeloma. J. Immunother. 43, 175–188 (2020)

    Article  CAS  PubMed  Google Scholar 

  95. T. Wang, F. Sun, W. Xie, M. Tang, H. He, X. Jia et al., A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett. 372, 166–178 (2016)

    Article  CAS  PubMed  Google Scholar 

  96. von E.P. Strandmann, H.P. Hansen, K.S. Reiners, R. Schnell, P. Borchmann, S. Merkert et al., A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human Multiple Myeloma in vitro and in vivo. Blood. 107, 1955–1962 (2006)

    Article  Google Scholar 

  97. T. Wang, F. Sun, Y. Wang, J. Jiang, M. Pan, M. Yuan et al., NKG2D Immunoligand rG7S-MICA enhances NK Cell-mediated Immunosurveillance in Colorectal Carcinoma. J. Immunother. 41, 109–117 (2018)

    Article  CAS  PubMed  Google Scholar 

  98. D.A. Vallera, M. Felices, R. McElmurry, V. McCullar, X. Zhou, J.U. Schmohl et al., IL-15 trispecific killer engagers (TriKEs) make natural killer cells specific to CD33 + targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. M. Felices, T.R. Lenvik, B. Kodal, A.J. Lenvik, P. Hinderlie, L.E. Bendzick et al., Potent cytolytic activity and specific IL15 delivery in a second-generation Trispecific Killer Engager. Cancer Immunol. Res. 8, 1139–1149 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. L. Gauthier, A. Morel, N. Anceriz, B. Rossi, A. Blanchard-Alvarez, G. Grondin et al., Multifunctional natural killer cell engagers targeting NKp46 trigger protective Tumor immunity. Cell. 177, 1701–1713e16 (2019)

    Article  CAS  PubMed  Google Scholar 

  101. L. Gauthier, A. Virone-Oddos, J. Beninga, B. Rossi, C. Nicolazzi, C. Amara et al., Control of acute Myeloid Leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat. Biotechnol. 41, 1296–1306 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. O. Demaria, L. Gauthier, M. Vetizou, A. Blanchard Alvarez, C. Vagne, G. Habif et al., Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell. Rep. Med. 3, 100783 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. M. Marotel, M.S. Hasim, A. Hagerman, M. Ardolino, The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 59–68 (2020)

    Article  CAS  PubMed  Google Scholar 

  104. M. Wantoch, E.B. Wilson, A.P. Droop, S.L. Phillips, M. Coffey, Y.M. El-Sherbiny et al., Oncolytic virus treatment differentially affects the CD56dim and CD56bright NK cell subsets in vivo and regulates a spectrum of human NK cell activity. Immunology. 166, 104–120 (2022)

    Article  CAS  PubMed  Google Scholar 

  105. C.A. Alvarez-Breckenridge, J. Yu, R. Price, J. Wojton, J. Pradarelli, H. Mao et al., NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat. Med. 18, 1827–1834 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. B. Xu, R. Ma, L. Russell, J.Y. Yoo, J. Han, H. Cui et al., An oncolytic herpes virus expressing E-cadherin resists NK cell clearance and improves viral spread and glioblastoma virotherapy. Nat Biotechnol. 2018;10.1038/nbt.4302

  107. A.P. Aspirin, de V.A.A. Los Reyes, Y. Kim, Polytherapeutic strategies with oncolytic virus-bortezomib and adjuvant NK cells in cancer treatment. J. R Soc. Interface. 18, 20200669 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. N.S. Senekal, K.J. Mahasa, A. Eladdadi, de L. Pillis, R. Ouifki, Natural Killer Cells Recruitment in Oncolytic Virotherapy: a Mathematical Model. Bull. Math. Biol. 83, 75 (2021)

    Article  CAS  PubMed  Google Scholar 

  109. Y. Kim, J.Y. Yoo, T.J. Lee, J. Liu, J. Yu, M.A. Caligiuri et al., Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc. Natl. Acad. Sci. U S A 115, 4927–4932 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. A.A. Alkayyal, L.-H. Tai, M.A. Kennedy, de C.T. Souza, J. Zhang, C. Lefebvre et al., NK-Cell recruitment is necessary for eradication of peritoneal carcinomatosis with an IL12-Expressing Maraba Virus Cellular Vaccine. Cancer Immunol. Res. 5, 211–221 (2017)

    Article  CAS  PubMed  Google Scholar 

  111. K. Rajani, C. Parrish, T. Kottke, J. Thompson, S. Zaidi, L. Ilett et al., Combination therapy with Reovirus and Anti-PD-1 Blockade controls Tumor Growth through Innate and Adaptive Immune responses. Mol. Ther. 24, 166–174 (2016)

    Article  CAS  PubMed  Google Scholar 

  112. S.B. Willingham, J.-P. Volkmer, A.J. Gentles, D. Sahoo, P. Dalerba, S.S. Mitra et al., The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. U S A 109, 6662–6667 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. L. Tian, B. Xu, K.-Y. Teng, M. Song, Z. Zhu, Y. Chen et al., Targeting fc receptor-mediated effects and the don’t eat me signal with an oncolytic virus expressing an anti-CD47 antibody to treat metastatic Ovarian cancer. Clin. Cancer Res. 28, 201–214 (2022)

    Article  CAS  PubMed  Google Scholar 

  114. A.M. Noonan, M.R. Farren, S.M. Geyer, Y. Huang, S. Tahiri, D. Ahn et al., Randomized phase 2 trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of metastatic pancreatic adenocarcinoma. Mol. Ther. 24, 1150–1158 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. N. Lamers-Kok, D. Panella, A.-M. Georgoudaki, H. Liu, D. Özkazanc, L. Kučerová et al., Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J. Hematol. Oncol. 15, 164 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. T. Mamo, S.M. Williams, S. Kinney, K.M. Tessier, T.E. DeFor, S. Cooley et al., Infusion reactions in natural killer cell immunotherapy: a retrospective review. Cytotherapy. 23, 627–634 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. A. Curti, L. Ruggeri, S. Parisi, A. Bontadini, E. Dan, M.R. Motta et al., Larger size of Donor Alloreactive NK Cell Repertoire correlates with Better Response to NK Cell Immunotherapy in Elderly Acute Myeloid Leukemia patients. Clin. Cancer Res. 22, 1914–1921 (2016)

    Article  CAS  PubMed  Google Scholar 

  118. S. Parisi, L. Ruggeri, E. Dan, S. Rizzi, B. Sinigaglia, D. Ocadlikova et al., Long-term Outcome after adoptive Immunotherapy with Natural Killer cells: alloreactive NK cell dose still matters. Front. Immunol. 12, 804988 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  119. J.H. Gong, G. Maki, H.G. Klingemann, Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 8, 652–658 (1994)

    CAS  PubMed  Google Scholar 

  120. G. Maki, H.G. Klingemann, J.A. Martinson, Y.K. Tam, Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J. Hematother Stem Cell. Res. 10, 369–383 (2001)

    Article  CAS  PubMed  Google Scholar 

  121. H. Klingemann, L. Boissel, F. Toneguzzo, Natural killer cells for immunotherapy – advantages of the NK-92 cell line over blood NK cells. Front. Immunol. 7, 91 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  122. S. Nagashima, R. Mailliard, Y. Kashii, T.E. Reichert, R.B. Herberman, P. Robbins et al., Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood. 91, 3850–3861 (1998)

    Article  CAS  PubMed  Google Scholar 

  123. Y.K. Tam, G. Maki, B. Miyagawa, B. Hennemann, T. Tonn, H.G. Klingemann, Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum. Gene Ther. 10, 1359–1373 (1999)

    Article  CAS  PubMed  Google Scholar 

  124. L. Gao, L. Yang, S. Zhang, Z. Ge, M. Su, Y. Shi et al., Engineering NK-92 cell by upregulating CXCR2 and IL-2 Via CRISPR-Cas9 improves its Antitumor effects as Cellular Immunotherapy for human Colon Cancer. J. Interferon Cytokine Res. 41, 450–460 (2021)

    Article  CAS  PubMed  Google Scholar 

  125. C. Jochems, J.W. Hodge, M. Fantini, R. Fujii, Y.M. Maurice, J.W. Greiner et al., An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget. 7, 86359–86373 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  126. J. Zhang, R. Sun, H. Wei, J. Zhang, Z. Tian, Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica. 89, 338–347 (2004)

    CAS  PubMed  Google Scholar 

  127. S. Arai, R. Meagher, M. Swearingen, H. Myint, E. Rich, J. Martinson et al., Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or Melanoma: a phase I trial. Cytotherapy. 10, 625–632 (2008)

    Article  CAS  PubMed  Google Scholar 

  128. T. Tonn, D. Schwabe, H.G. Klingemann, S. Becker, R. Esser, U. Koehl et al., Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 15, 1563–1570 (2013)

    Article  CAS  PubMed  Google Scholar 

  129. M. Boyiadzis, M. Agha, R.L. Redner, A. Sehgal, A. Im, J.-Z. Hou et al., Phase 1 clinical trial of adoptive immunotherapy using off-the-shelf activated natural killer cells in patients with refractory and relapsed acute Myeloid Leukemia. Cytotherapy. 19, 1225–1232 (2017)

    Article  CAS  PubMed  Google Scholar 

  130. S.A. Lim, T.-J. Kim, J.E. Lee, C.H. Sonn, K. Kim, J. Kim et al., Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated Tumor cells for adoptive immunotherapy. Cancer Res. 73, 2598–2607 (2013)

    Article  CAS  PubMed  Google Scholar 

  131. Y.H. Choi, E.J. Lim, S.W. Kim, Y.W. Moon, K.S. Park, H.-J. An, IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells. J. Immunother Cancer. 7, 168 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  132. C.J. Denman, V.V. Senyukov, S.S. Somanchi, P.V. Phatarpekar, L.M. Kopp, J.L. Johnson et al., Membrane-bound IL-21 promotes sustained Ex vivo proliferation of human natural killer cells. PLoS One. 7, e30264 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. X.-Y. Zhao, Q. Jiang, H. Jiang, L.-J. Hu, T. Zhao, X.-X. Yu et al., Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute Myeloid Leukemia in vivo. Eur. J. Immunol. 50, 1374–1385 (2020)

    Article  CAS  PubMed  Google Scholar 

  134. S.O. Ciurea, J.R. Schafer, R. Bassett, C.J. Denman, K. Cao, D. Willis et al., Phase 1 clinical trial using mbIL21 ex vivo–expanded donor-derived NK cells after haploidentical transplantation. Blood. 130, 1857–1868 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. S.O. Ciurea, P. Kongtim, D. Soebbing, P. Trikha, G. Behbehani, G. Rondon et al., Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia. 36, 155–164 (2022)

    Article  CAS  PubMed  Google Scholar 

  136. J.L. Oyer, V. Pandey, R.Y. Igarashi, S.S. Somanchi, A. Zakari, M. Solh et al., Natural killer cells stimulated with PM21 particles expand and biodistribute in vivo: clinical implications for cancer treatment. Cytotherapy. 18, 653–663 (2016)

    Article  CAS  PubMed  Google Scholar 

  137. J.L. Oyer, T.J. Croom-Perez, T.A. Dieffenthaller, L.D. Robles-Carillo, S.B. Gitto, D.A. Altomare et al., Cryopreserved PM21-Particle-expanded natural killer cells maintain cytotoxicity and Effector functions in Vitro and in vivo. Front. Immunol. 13, 861681 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. J.S. Miller, Y. Soignier, A. Panoskaltsis-Mortari, S.A. McNearney, G.H. Yun, S.K. Fautsch et al., Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 105, 3051–3057 (2005)

    Article  CAS  PubMed  Google Scholar 

  139. L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W.D. Shlomchik, A. Tosti et al., Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 295, 2097–2100 (2002)

    Article  CAS  PubMed  Google Scholar 

  140. J.E. Rubnitz, H. Inaba, R.C. Ribeiro, S. Pounds, B. Rooney, T. Bell et al., NKAML: a pilot study to determine the safety and feasibility of Haploidentical Natural Killer Cell Transplantation in Childhood Acute Myeloid Leukemia. J. Clin. Oncol. 28, 955–959 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. A. Curti, L. Ruggeri, A. D’Addio, A. Bontadini, E. Dan, M.R. Motta et al., Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute Myeloid Leukemia patients. Blood. 118, 3273–3279 (2011)

    Article  CAS  PubMed  Google Scholar 

  142. W. Hu, G. Wang, D. Huang, M. Sui, Y. Xu, Cancer Immunotherapy based on natural killer cells: current progress and New opportunities. Front. Immunol. 10, 1205 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. M. Lin, H. Luo, S. Liang, J. Chen, A. Liu, L. Niu et al., Pembrolizumab plus allogeneic NK cells in advanced non-small cell Lung cancer patients. J. Clin. Invest. 130, 2560–2569 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. S. Querol, P. Rubinstein, A. Madrigal, The wider perspective: cord blood banks and their future prospects. Br. J. Haematol. 195, 507–517 (2021)

    Article  PubMed  Google Scholar 

  145. T. Nham, S.M. Poznanski, I.Y. Fan, F. Vahedi, M.M. Shenouda, A.J. Lee et al., Ex vivo-expanded natural killer cells derived from long-term Cryopreserved Cord blood are cytotoxic against primary Breast Cancer cells. J. Immunother. 41, 64–72 (2018)

    Article  CAS  PubMed  Google Scholar 

  146. R. Alnabhan, A. Madrigal, A. Saudemont, Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy. 17, 73–85 (2015)

    Article  CAS  PubMed  Google Scholar 

  147. C. Reina-Ortiz, M. Constantinides, A. Fayd-Herbe-de-Maudave, J. Présumey, J. Hernandez, G. Cartron et al., Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against Tumor cells from Multiple Myeloma patients. OncoImmunology. 10, 1853314 (2021)

    Article  Google Scholar 

  148. L. Herrera, J.M. Salcedo, S. Santos, M. Vesga, F. Borrego, C. Eguizabal, OP9 feeder cells are Superior to M2-10B4 cells for the generation of mature and functional natural killer cells from umbilical cord hematopoietic progenitors. Front. Immunol. 8, 755 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  149. J. Spanholtz, M. Tordoir, D. Eissens, F. Preijers, van der A. Meer, I. Joosten et al., High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One. 5, e9221 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  150. H. Dolstra, M.W.H. Roeven, J. Spanholtz, B.N. Hangalapura, M. Tordoir, F. Maas et al., Successful transfer of umbilical cord blood CD34 + hematopoietic stem and progenitor-derived NK Cells in older Acute Myeloid Leukemia patients. Clin. Cancer Res. 23, 4107–4118 (2017)

    Article  CAS  PubMed  Google Scholar 

  151. D.A. Knorr, Z. Ni, D. Hermanson, M.K. Hexum, L. Bendzick, L.J.N. Cooper et al., Clinical-scale derivation of natural killer cells from human pluripotent stem cells for Cancer Therapy. Stem Cells Transl Med. 2, 274–283 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. H. Zhu, D.S. Kaufman, An Improved Method to produce clinical-scale natural killer cells from human pluripotent stem cells. Methods Mol. Biol. 2048, 107–119 (2019)

    Article  CAS  PubMed  Google Scholar 

  153. K.B. Lupo, J.-I. Moon, A.M. Chambers, S. Matosevic, Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy. 23, 939–952 (2021)

    Article  CAS  PubMed  Google Scholar 

  154. K. Shankar, C.M. Capitini, K. Saha, Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell. Res. Ther. 11, 234 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. F. Cichocki, R. Bjordahl, S. Gaidarova, S. Mahmood, R. Abujarour, H. Wang et al., iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo Tumor control in concert with T cells and anti-PD-1 therapy. Sci. Transl Med. 12, eaaz5618 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. P.S. Woll, B. Grzywacz, X. Tian, R.K. Marcus, D.A. Knorr, M.R. Verneris et al., Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 113, 6094–6101 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. D.L. Hermanson, L. Bendzick, L. Pribyl, V. McCullar, R.I. Vogel, J.S. Miller et al., Induced pluripotent stem cell-derived natural killer cells for treatment of Ovarian cancer. Stem Cells. 34, 93–101 (2016)

    Article  CAS  PubMed  Google Scholar 

  158. M.M. Berrien-Elliott, M.T. Jacobs, T.A. Fehniger, Allogeneic natural killer cell therapy. Blood. 141, 856 (2023)

    Article  CAS  PubMed  Google Scholar 

  159. H. Zhu, R.H. Blum, R. Bjordahl, S. Gaidarova, P. Rogers, T.T. Lee et al., Pluripotent stem cell–derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood. 135, 399–410 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  160. H. Zhu, R.H. Blum, D. Bernareggi, E.H. Ask, Z. Wu, H.J. Hoel et al., Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell. Stem Cell. 27, 224–237e6 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. H. Dong, J.D. Ham, G. Hu, G. Xie, J. Vergara, Y. Liang et al., Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute Myeloid Leukemia. Proc. Natl. Acad. Sci. U S A 119, e2122379119 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. J.C. Sun, L.L. Lanier, Is there natural killer cell memory and can it be harnessed by vaccination? Cold Spring Harb Perspect Biol. 10, a029538 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. A. Cerwenka, L.L. Lanier, Natural killer cell memory in Infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016)

    Article  CAS  PubMed  Google Scholar 

  164. I. Terrén, A. Orrantia, A. Mosteiro, J. Vitallé, O. Zenarruzabeitia, F. Borrego, Metabolic changes of Interleukin-12/15/18-stimulated human NK cells. Sci. Rep. 11, 6472 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  165. E.-M. Ewen, J.H.W. Pahl, M. Miller, C. Watzl, A. Cerwenka, KIR downregulation by IL-12/15/18 unleashes human NK cells from KIR/HLA-I inhibition and enhances killing of Tumor cells. Eur. J. Immunol. 48, 355–365 (2018)

    Article  CAS  PubMed  Google Scholar 

  166. J.W. Leong, J.M. Chase, R. Romee, S.E. Schneider, R.P. Sullivan, M.A. Cooper et al., Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biol. Blood Marrow Transplant. 20, 463–473 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. M. Boieri, A. Ulvmoen, A. Sudworth, C. Lendrem, M. Collin, A.M. Dickinson et al., IL-12, IL-15, and IL-18 pre-activated NK cells target resistant T cell acute lymphoblastic Leukemia and delay Leukemia development in vivo. OncoImmunology. 6, e1274478 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  168. M.A. Cooper, J.M. Elliott, P.A. Keyel, L. Yang, J.A. Carrero, W.M. Yokoyama, Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. U S A 106, 1915–1919 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. J. Ni, M. Miller, A. Stojanovic, N. Garbi, A. Cerwenka, Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. J. Exp. Med. 209, 2351–2365 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. R. Romee, M. Rosario, M.M. Berrien-Elliott, J.A. Wagner, B.A. Jewell, T. Schappe et al., Cytokine-induced memory-like natural killer cells exhibit enhanced responses against Myeloid Leukemia. Sci. Transl Med. 8, 357ra123 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  171. N.D. Marin, B.A. Krasnick, M. Becker-Hapak, L. Conant, S.P. Goedegebuure, M.M. Berrien-Elliott et al., Memory-like differentiation enhances NK cell responses to Melanoma. Clin. Cancer Res. 27, 4859–4869 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. L.D. Uppendahl, M. Felices, L. Bendzick, C. Ryan, B. Kodal, P. Hinderlie et al., Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against Ovarian cancer cells. Gynecol. Oncol. 153, 149–157 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. J.N. Kochenderfer, S.A. Rosenberg, Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 10, 267–276 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. C. Lin, J. Zhang, Reformation in chimeric antigen receptor based cancer immunotherapy: redirecting natural killer cell. Biochimica et Biophysica Acta (BBA) - reviews on Cancer. 2018;1869:200–215

  175. M. Chmielewski, H. Abken, TRUCKs: the fourth generation of CARs. Expert Opin. Biol. Ther. 15, 1145–1154 (2015)

    Article  CAS  PubMed  Google Scholar 

  176. L. Zhang, Y. Meng, X. Feng, Z. Han, CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark. Res. 10, 12 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  177. Y. Gong, R.G.J. Klein Wolterink, J. Wang, G.M.J. Bos, W.T.V. Germeraad, Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol. 14, 73 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Y. Li, D.L. Hermanson, B.S. Moriarity, D.S. Kaufman, Human iPSC-Derived natural killer cells Engineered with chimeric Antigen receptors enhance anti-tumor activity. Cell. Stem Cell. 23, 181–192e5 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. K.-Y. Teng, A.G. Mansour, Z. Zhu, Z. Li, L. Tian, S. Ma et al., Off-the-Shelf prostate Stem Cell Antigen–Directed chimeric Antigen receptor Natural Killer Cell Therapy to treat Pancreatic Cancer. Gastroenterology. 162, 1319–1333 (2022)

    Article  CAS  PubMed  Google Scholar 

  180. M. Gang, N.D. Marin, P. Wong, C.C. Neal, L. Marsala, M. Foster et al., CAR-modified memory-like NK cells exhibit potent responses to NK-resistant Lymphomas. Blood. 136, 2308–2318 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  181. B. Cao, M. Liu, J. Huang, J. Zhou, J. Li, H. Lian et al., Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer. Int. J. Biol. Sci. 17, 3850–3861 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. M. Liu, W. Huang, Y. Guo, Y. Zhou, C. Zhi, J. Chen et al., CAR NK-92 cells targeting DLL3 kill effectively small cell Lung cancer cells in vitro and in vivo. J. Leukoc. Biol. 2022

  183. L. Wu, F. Liu, L. Yin, F. Wang, H. Shi, Q. Zhao et al., The establishment of polypeptide PSMA-targeted chimeric antigen receptor-engineered natural killer cells for castration-resistant Prostate cancer and the induction of ferroptosis-related cell death. Cancer Commun. (Lond) 2022

  184. H. Liu, B. Yang, T. Sun, L. Lin, Y. Hu, M. Deng et al., Specific growth inhibition of ErbB2–expressing human Breast cancer cells by genetically modified NK–92 cells. Oncol. Rep. 33, 95–102 (2015)

    CAS  PubMed  Google Scholar 

  185. R. Ma, T. Lu, Z. Li, K.-Y. Teng, A.G. Mansour, M. Yu et al., An oncolytic virus expressing IL-15/IL-15Rα combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer Res. 81, 3635–3648 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. E. Liu, D. Marin, P. Banerjee, H.A. Macapinlac, P. Thompson, R. Basar et al., Use of CAR-Transduced Natural Killer cells in CD19-Positive lymphoid tumors. N Engl. J. Med. 382, 545–553 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. CAR NK Cell Therapies Show Preliminary Safety, and Efficacy in AML, Non-Hodgkin Lymphoma [Internet]. OncLive. 2022 [cited 2023 Nov 9]. Available from: https://www.onclive.com/view/car-nk-cell-therapies-show-preliminary-safety-and-efficacy-in-aml-non-hodgkin-lymphoma

  188. NKX019 Showcases Manageable Safety, Early Activity in R/R B-cell Non-Hodgkin Lymphoma [Internet]. OncLive. 2023 [cited 2023 Nov 9]. Available from: https://www.onclive.com/view/nkx019-showcases-manageable-safety-early-activity-in-r-r-b-cell-non-hodgkin-lymphoma

  189. X. Zhang, Y. Guo, Y. Ji, Y. Gao, M. Zhang, Y. Liu et al., Cytokine release Syndrome after Modified CAR-NK Therapy in an Advanced Non-small Cell Lung Cancer patient: a Case Report. Cell Transpl. 31, 09636897221094244 (2022)

    Article  Google Scholar 

  190. X. Wang, X. Yang, X. Yuan, W. Wang, Y. Wang, Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp. Hematol. Oncol. 11, 85 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  191. I. Nakase, N. Ueno, M. Matsuzawa, K. Noguchi, M. Hirano, M. Omura et al., Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open. Bio. 11, 753–767 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. A. Görgens, G. Corso, D.W. Hagey, R. Jawad Wiklander, M.O. Gustafsson, U. Felldin et al., Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles. 11, e12238 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  193. L. Lugini, S. Cecchetti, V. Huber, F. Luciani, G. Macchia, F. Spadaro et al., Immune surveillance properties of human NK cell-derived exosomes. J. Immunol. 189, 2833–2842 (2012)

    Article  CAS  PubMed  Google Scholar 

  194. K. Kaban, C. Hinterleitner, Y. Zhou, E. Salva, A.G. Kantarci, H.R. Salih et al., Therapeutic silencing of BCL-2 using NK Cell-Derived exosomes as a Novel Therapeutic Approach in Breast Cancer. Cancers (Basel). 13, 2397 (2021)

    Article  CAS  PubMed  Google Scholar 

  195. Y. Qi, X. Zhao, Y. Dong, M. Wang, J. Wang, Z. Fan et al., Opportunities and challenges of natural killer cell-derived extracellular vesicles. Front. Bioeng. Biotechnol. 11, 1122585 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  196. C.-H. Wu, J. Li, L. Li, J. Sun, M. Fabbri, A.S. Wayne et al., Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. J. Extracell. Vesicles. 8, 1588538 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. F. Wu, M. Xie, M. Hun, Z. She, C. Li, S. Luo et al., Natural killer cell-derived extracellular vesicles: Novel players in Cancer Immunotherapy. Front. Immunol. 12, 658698 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. A.M.L. Chan, J.M. Cheah, Y. Lokanathan, M.H. Ng, J.X. Law, Natural killer cell-derived extracellular vesicles as a Promising Immunotherapeutic Strategy for Cancer: a systematic review. Int. J. Mol. Sci. 24, 4026 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. L. Zhu, S. Kalimuthu, J.M. Oh, P. Gangadaran, S.H. Baek, S.Y. Jeong et al., Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials. 190–191, 38–50 (2019)

    Article  PubMed  Google Scholar 

  200. M. Aarsund, F.M. Segers, Y. Wu, M. Inngjerdingen, Comparison of characteristics and Tumor targeting properties of extracellular vesicles derived from primary NK cells or NK-cell lines stimulated with IL-15 or IL-12/15/18. Cancer Immunol. Immunother 2022

  201. P. Neviani, P.M. Wise, M. Murtadha, C.W. Liu, C.-H. Wu, A.Y. Jong et al., Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune Escape mechanisms. Cancer Res. 79, 1151–1164 (2019)

    Article  CAS  PubMed  Google Scholar 

  202. M. Zhang, W. Shao, T. Yang, H. Liu, S. Guo, D. Zhao et al., Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication. Adv Sci (Weinh). 2022;e2201135

  203. D. Han, K. Wang, T. Zhang, G.-C. Gao, H. Xu, Natural killer cell-derived exosome-entrapped paclitaxel can enhance its anti-tumor effect. Eur. Rev. Med. Pharmacol. Sci. 24, 5703–5713 (2020)

    CAS  PubMed  Google Scholar 

  204. S. Rafiq, C.S. Hackett, R.J. Brentjens, Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020)

    Article  PubMed  Google Scholar 

  205. Y. Zhang, D.L. Wallace, de C.M. Lara, H. Ghattas, B. Asquith, A. Worth et al., In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral Infection. Immunology. 121, 258–265 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. M. Daher, K. Rezvani, Outlook for New CAR-Based therapies with a focus on CAR NK cells: what lies Beyond CAR-Engineered T cells in the race against Cancer. Cancer Discov. 11, 45–58 (2021)

    Article  CAS  PubMed  Google Scholar 

  207. R.C. Sterner, R.M. Sterner, CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work has been supported by the National Natural Science Foundation of China (82203163), the Natural Science Foundation of Hunan Province (2022JJ40660), the Natural Science Foundation of Changsha (kq2202123) and open sharing fund for the large-scale instruments and equipments of Central South University (CSUZC202235).

Author information

Authors and Affiliations

Authors

Contributions

MH, YXL, MP, JSG, YZM, YMW contributed to drafting and editing the manuscript and figures. WX, ZYZ and CMF designed, revised, and finalized the manuscript. YL and ZYZ participated in the design of this review. QJY and FYW contributed to the literature search. All authors contributed toward drafting and revising and agreed to submit.

Corresponding authors

Correspondence to Chunmei Fan or Wei Xiong.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Liu, Y., Yan, Q. et al. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol. 47, 733–757 (2024). https://doi.org/10.1007/s13402-023-00909-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00909-3

Keywords