Skip to main content

Advertisement

Log in

Molecular actions of exosomes and their theragnostics in colorectal cancer: current findings and limitations

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are cell-released, membranous structures essential for intercellular communication. The biochemical compositions and physiological impacts of exosomes, lipid-bound, endosomal origin EVs, have been focused on, especially on the tumor-host interactions in a defined tumor microenvironment (TME). Despite recent progress in targeted therapy and cancer immunotherapy in colorectal cancer (CRC), cancer patients still suffer from distal metastasis and tumor relapse, suggesting unmet needs for biomarkers directing therapeutic interventions and predicting treatment responsiveness. As exosomes are indispensable for intercellular communication and high exosome abundance makes them feasible biomarker molecules, this review discusses exosome heterogeneity and how exosomes orchestrate the interplay among tumor cells, cancer stem cells (CSCs) and host cells, including stromal cells, endothelial cells and immunocytes, in the CRC TME. This review also discusses mechanisms for loading exosomal contents and potential exosomal DNA, RNA and protein biomarkers for early CRC detection. Finally, we summarize the diagnostic and therapeutic exosomes in clinical trials. We envision that detecting and targeting cancer-specific exosomes could provide therapeutic advances in developing personalized cancer medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAFs:

Cancer-associated fibroblasts

CEA:

Carcinoembryonic antigen

ceRNA:

Endogenous RNA

circRNAs:

Circular RNAs

CRC:

Colorectal cancer

CRCSCs:

Colorectal cancer stem cells

CSCs:

Cancer stem cells

CTC:

Circulating tumor cells

DCs:

Dendritic cells

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

ESCRT:

Endosomal sorting complexes required for transport

EVs:

Extracellular vesicles

FOBT:

Fecal occult blood test

HDI:

High developing index

HLECs:

Human lymphatic endothelial cells

HMEC-1:

Human microvascular endothelial cells

HUVECs:

Human umbilical vein endothelial cells

ILVs:

Intraluminal vesicles

LPS:

Lipopolysaccharide

MDSCs:

Myeloid-derived suppressor cells

MIIC:

Major histocompatibility complex class II-enriched component

MISEVs:

Minimal information for studies of extracellular vesicles

MN:

Micronuclei

mtDNA:

Mitochondria DNA

MVBs:

Multivesicular bodies

nSMase:

Neutral sphingomyelinase

SCD:

Symmetric cell division

SEER:

Surveillance, Epidemiology, and End Results

SLNs:

Sentinel lymph nodes

TGF-β1:

Transforming growth factor-β1

TME:

Tumor microenvironment

TRAF3:

TNF receptor-associated Factor 3

Tregs:

Regulatory T cells

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. World Health Organization, Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019 (World Health Organization, Geneva, 2020)

    Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249. doi: https://doi.org/10.3322/caac.21660.

  3. Surveillance E, and End Results (SEER) Program Populations (1969-2019) National Cancer Institute, DCCPS, Surveillance Research Program, released February 2021. (Cancer Stat Facts: Colorectal Cancer, Maryland, 2021)

  4. L. Guittet, V. Bouvier, N. Mariotte, J.P. Vallee, D. Arsene, S. Boutreux et al., Comparison of a guaiac based and an immunochemical faecal occult blood test in screening for colorectal cancer in a general average risk population. Gut 56, 210–214 (2007). https://doi.org/10.1136/gut.2006.101428

    Article  CAS  Google Scholar 

  5. D.J. Robertson, T.F. Imperiale, Stool testing for colorectal cancer screening. Gastroenterology 149, 1286–1293 (2015). https://doi.org/10.1053/j.gastro.2015.05.045

    Article  Google Scholar 

  6. R.H. Fletcher, Carcinoembryonic antigen. Ann. Intern. Med. 104, 66–73 (1986). https://doi.org/10.7326/0003-4819-104-1-66

    Article  CAS  Google Scholar 

  7. J.S. Moore, T.H. Aulet, Colorectal cancer screening. Surg. Clin. North Am. 97, 487–502 (2017). https://doi.org/10.1016/j.suc.2017.01.001

    Article  Google Scholar 

  8. C. Harding, J. Heuser, P. Stahl, Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell. Biol. 97, 329–339 (1983). https://doi.org/10.1083/jcb.97.2.329

    Article  CAS  Google Scholar 

  9. B.T. Pan, R.M. Johnstone, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983). https://doi.org/10.1016/0092-8674(83)90040-5

    Article  CAS  Google Scholar 

  10. R.M. Johnstone, M. Adam, J.R. Hammond, L. Orr, C. Turbide, Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987)

    Article  CAS  Google Scholar 

  11. M.P. Bebelman, M.J. Smit, D.M. Pegtel, S.R. Baglio, Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther. 188, 1–11 (2018). https://doi.org/10.1016/j.pharmthera.2018.02.013

    Article  CAS  Google Scholar 

  12. M. Catalano, L. O’Driscoll, Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J. Extracell. Vesicles 9, 1703244 (2020). https://doi.org/10.1080/20013078.2019.1703244

    Article  CAS  Google Scholar 

  13. M. Colombo, C. Moita, G. van Niel, J. Kowal, J. Vigneron et al., Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565 (2013). https://doi.org/10.1242/jcs.128868

    Article  CAS  Google Scholar 

  14. T. Wollert, J.H. Hurley, Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010). https://doi.org/10.1038/nature08849

    Article  CAS  Google Scholar 

  15. R.L. Williams, S. Urbe, The emerging shape of the ESCRT machinery. Nat. Rev. Mol. Cell Biol. 8, 355–368 (2007). https://doi.org/10.1038/nrm2162

    Article  CAS  Google Scholar 

  16. K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008). https://doi.org/10.1126/science.1153124

    Article  CAS  Google Scholar 

  17. M. Chivet, F. Hemming, K. Pernet-Gallay, S. Fraboulet, R. Sadoul, Emerging role of neuronal exosomes in the central nervous system. Front Physiol. 3, 145 (2012). https://doi.org/10.3389/fphys.2012.00145

    Article  CAS  Google Scholar 

  18. G. Raposo, H.W. Nijman, W. Stoorvogel, R. Liejendekker, C.V. Harding et al., B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996). https://doi.org/10.1084/jem.183.3.1161

    Article  CAS  Google Scholar 

  19. L. Zitvogel, A. Regnault, A. Lozier, J. Wolfers, C. Flament et al., Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600 (1998). https://doi.org/10.1038/nm0598-594

    Article  CAS  Google Scholar 

  20. D. Koppers-Lalic, M. Hackenberg, I.V. Bijnsdorp, M.A.J. van Eijndhoven, P. Sadek et al., Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8, 1649–1658 (2014). https://doi.org/10.1016/j.celrep.2014.08.027

    Article  CAS  Google Scholar 

  21. M.F. Bolukbasi, A. Mizrak, G.B. Ozdener, S. Madlener, T. Strobel et al., miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol. Ther. Nucleic Acids 1, e10 (2012). https://doi.org/10.1038/mtna.2011.2

    Article  CAS  Google Scholar 

  22. E.N. Nolte-’t Hoen, H.P. Buermans, M. Waasdorp, W. Stoorvogel, M.H. Wauben et al., Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40, 9272–9285 (2012). https://doi.org/10.1093/nar/gks658

    Article  CAS  Google Scholar 

  23. A. Yokoi, A. Villar-Prados, P.A. Oliphint, J. Zhang, X. Song et al., Mechanisms of nuclear content loading to exosomes. Sci. Adv. 5, eaax8849 (2019). https://doi.org/10.1126/sciadv.aax8849

    Article  CAS  Google Scholar 

  24. A. Takahashi, R. Okada, K. Nagao, Y. Kawamata, A. Hanyu et al., Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287 (2017). https://doi.org/10.1038/ncomms15287

    Article  CAS  Google Scholar 

  25. D. Torralba, F. Baixauli, C. Villarroya-Beltri, I. Fernandez-Delgado, A. Latorre-Pellicer et al., Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 9, 2658 (2018). https://doi.org/10.1038/s41467-018-05077-9

    Article  CAS  Google Scholar 

  26. P. Sansone, C. Savini, I. Kurelac, Q. Chang, L.B. Amato et al., Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl. Acad. Sci. U. S. A. 114, E9066–E9075 (2017). https://doi.org/10.1073/pnas.1704862114

    Article  CAS  Google Scholar 

  27. J. Guinney, R. Dienstmann, X. Wang, A. de Reynies, A. Schlicker et al., The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015). https://doi.org/10.1038/nm.3967

    Article  CAS  Google Scholar 

  28. Z. Huang, M. Yang, Y. Li, F. Yang, Y. Feng, Exosomes derived from hypoxic colorectal cancer cells transfer Wnt4 to normoxic cells to elicit a prometastatic phenotype. Int. J. Biol. Sci. 14, 2094–2102 (2018). https://doi.org/10.7150/ijbs.28288

    Article  CAS  Google Scholar 

  29. X. Hu, Y. Mu, J. Liu, X. Mu, F. Gao et al., Exosomes derived from hypoxic colorectal cancer cells transfer miR-410-3p to regulate tumor progression. J. Cancer 11, 4724–4735 (2020). https://doi.org/10.7150/jca.33232

    Article  CAS  Google Scholar 

  30. J. Li, P. Yang, F. Chen, Y. Tan, C. Huang et al., Hypoxic colorectal cancer-derived extracellular vesicles deliver microRNA-361-3p to facilitate cell proliferation by targeting TRAF3 via the noncanonical NF-kappaB pathways. Clin. Transl. Med. 11, e349 (2021). https://doi.org/10.1002/ctm2.349

    Article  CAS  Google Scholar 

  31. X. Zhang, J. Bai, H. Yin, L. Long, Z. Zheng et al., Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition. Mol. Oncol. 14, 2589–2608 (2020). https://doi.org/10.1002/1878-0261.12765

    Article  CAS  Google Scholar 

  32. H. Kalra, L. Gangoda, P. Fonseka, S.V. Chitti, M. Liem et al., Extracellular vesicles containing oncogenic mutant beta-catenin activate Wnt signalling pathway in the recipient cells. J. Extracell. Vesicles 8, 1690217 (2019). https://doi.org/10.1080/20013078.2019.1690217

    Article  CAS  Google Scholar 

  33. R. Domenis, A. Cifu, C. Mio, M. Fabris, F. Curcio, Pro-inflammatory microenvironment modulates the transfer of mutated TP53 mediated by tumor exosomes. Int. J. Mol. Sci. 22(2021). https://doi.org/10.3390/ijms22126258

  34. A. Shang, C. Gu, W. Wang, X. Wang, J. Sun et al., Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-beta1 axis. Mol. Cancer 19, 117 (2020). https://doi.org/10.1186/s12943-020-01235-0

    Article  CAS  Google Scholar 

  35. Z. Zeng, Y. Li, Y. Pan, X. Lan, F. Song et al., Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018). https://doi.org/10.1038/s41467-018-07810-w

    Article  CAS  Google Scholar 

  36. H.Y. Hu, C.H. Yu, H.H. Zhang, S.Z. Zhang, W.Y. Yu et al., Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2. Int. J. Biol. Macromol. 132, 470–477 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.221

    Article  CAS  Google Scholar 

  37. Q. He, A. Ye, W. Ye, X. Liao, G. Qin et al., Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis. 12, 576 (2021). https://doi.org/10.1038/s41419-021-03803-8

    Article  CAS  Google Scholar 

  38. A. Shang, X. Wang, C. Gu, W. Liu, J. Sun et al., Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1. Aging (Albany NY) 12, 8352–8371 (2020). https://doi.org/10.18632/aging.103145

    Article  CAS  Google Scholar 

  39. J. Zhi, X.J. Jia, J. Yan, H.C. Wang, B. Feng et al., BRAF(V600E) mutant colorectal cancer cells mediate local immunosuppressive microenvironment through exosomal long noncoding RNAs. World J. Gastrointest. Oncol. 13, 2129–2148 (2021). https://doi.org/10.4251/wjgo.v13.i12.2129

    Article  Google Scholar 

  40. X. Zheng, J. Liu, X. Li, R. Tian, K. Shang et al., Angiogenesis is promoted by exosomal DPP4 derived from 5-fluorouracil-resistant colon cancer cells. Cancer Lett. 497, 190–201 (2021). https://doi.org/10.1016/j.canlet.2020.10.009

    Article  CAS  Google Scholar 

  41. P.S. Steeg, Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016). https://doi.org/10.1038/nrc.2016.25

    Article  CAS  Google Scholar 

  42. T. Ning, J. Li, Y. He, H. Zhang, X. Wang et al., Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer. Mol. Ther. 29, 2723–2736 (2021). https://doi.org/10.1016/j.ymthe.2021.04.028

    Article  CAS  Google Scholar 

  43. F. Chalmin, S. Ladoire, G. Mignot, J. Vincent, M. Bruchard et al., Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. 120, 457–471 (2010). https://doi.org/10.1172/JCI40483

    Article  CAS  Google Scholar 

  44. B. Sun, Y. Zhou, Y. Fang, Z. Li, X. Gu, J. Xiang, Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. Int. J. Cancer 145, 1648–1659 (2019). https://doi.org/10.1002/ijc.32196

    Article  CAS  Google Scholar 

  45. S. Zhao, Y. Mi, B. Guan, B. Zheng, P. Wei et al., Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J. Hematol. Oncol. 13, 156 (2020). https://doi.org/10.1186/s13045-020-00991-2

    Article  CAS  Google Scholar 

  46. J. Lan, L. Sun, F. Xu, L. Liu, F. Hu et al., M2 Macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res. 79, 146–158 (2019). https://doi.org/10.1158/0008-5472.CAN-18-0014

    Article  CAS  Google Scholar 

  47. T. Liu, L. Zhou, D. Li, T. Andl, Y. Zhang, Cancer-associated fibroblasts build and secure the tumor microenvironment. Front. Cell Dev. Biol. 7, 60 (2019). https://doi.org/10.3389/fcell.2019.00060

    Article  Google Scholar 

  48. A. Rai, D.W. Greening, M. Chen, R. Xu, H. Ji et al., Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics 19, e1800148 (2019). https://doi.org/10.1002/pmic.201800148

    Article  CAS  Google Scholar 

  49. A. Rai, D.W. Greening, R. Xu, W. Suwakulsiri, R.J. Simpson, Exosomes derived from the human primary colorectal cancer cell line SW480 orchestrate fibroblast-led cancer invasion. Proteomics 20, e2000016 (2020). https://doi.org/10.1002/pmic.202000016

    Article  CAS  Google Scholar 

  50. S.P. Clerici, M. Peppelenbosch, G. Fuhler, S.R. Consonni, C.V. Ferreira-Halder, Colorectal cancer cell-derived small extracellular vesicles educate human fibroblasts to stimulate migratory capacity. Front. Cell. Dev. Biol. 9, 696373 (2021). https://doi.org/10.3389/fcell.2021.696373

    Article  Google Scholar 

  51. S. Yoshii, Y. Hayashi, H. Iijima, T. Inoue, K. Kimura et al., Exosomal microRNAs derived from colon cancer cells promote tumor progression by suppressing fibroblast TP53 expression. Cancer Sci. 110, 2396–2407 (2019). https://doi.org/10.1111/cas.14084

    Article  CAS  Google Scholar 

  52. Y. Zhang, S. Wang, Q. Lai, Y. Fang, C. Wu, Y. Liu, Q. Li, X. Wang, C. Gu, J. Chen, J. Cai, A. Li, S. Liu, Cancer-associated fibroblasts-derived exosomal miR-17-5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-beta1 positive feedback loop. Cancer Lett. 491, 22–35 (2020). https://doi.org/10.1016/j.canlet.2020.07.023

    Article  CAS  Google Scholar 

  53. X. Chen, J. Liu, Q. Zhang, B. Liu, Y. Cheng, Y. Zhang et al., Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J. Exp. Clin. Cancer Res. 39, 65 (2020). https://doi.org/10.1186/s13046-019-1507-2

    Article  CAS  Google Scholar 

  54. C. Gu, H. Lu, Z. Qian, Matrine reduces the secretion of exosomal circSLC7A6 from cancer-associated fibroblast to inhibit tumorigenesis of colorectal cancer by regulating CXCR5. Biochem. Biophys. Res. Commun. 527, 638–645 (2020). https://doi.org/10.1016/j.bbrc.2020.04.142

    Article  CAS  Google Scholar 

  55. M.H. Frank, B.J. Wilson, J.S. Gold, N.Y. Frank, Clinical implications of colorectal cancer stem cells in the age of single-cell omics and targeted therapies. Gastroenterology 160, 1947–1960 (2021). https://doi.org/10.1053/j.gastro.2020.12.080

    Article  CAS  Google Scholar 

  56. H. Zhao, S. Chen, Q. Fu, Exosomes from CD133(+) cells carrying circ-ABCC1 mediate cell stemness and metastasis in colorectal cancer. J. Cell. Biochem. 121, 3286–3297 (2020). https://doi.org/10.1002/jcb.29600

    Article  CAS  Google Scholar 

  57. D. Kyuno, K. Zhao, M. Schnolzer, J. Provaznik, T. Hackert et al., Claudin7-dependent exosome-promoted reprogramming of nonmetastasizing tumor cells. Int. J. Cancer 145, 2182–2200 (2019). https://doi.org/10.1002/ijc.32312

    Article  CAS  Google Scholar 

  58. W.L. Hwang, J.K. Jiang, S.H. Yang, T.S. Huang, H.Y. Lan et al., MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat. Cell. Biol. 16, 268–280 (2014). https://doi.org/10.1038/ncb2910

    Article  CAS  Google Scholar 

  59. W.C. Cheng, T.T. Liao, C.C. Lin, L.E. Yuan, H.Y. Lan et al., RAB27B-activated secretion of stem-like tumor exosomes delivers the biomarker microRNA-146a-5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer. Int. J. Cancer. 145, 2209–2224 (2019). https://doi.org/10.1002/ijc.32338

    Article  CAS  Google Scholar 

  60. W.L. Hwang, H.Y. Lan, W.C. Cheng, S.C. Huang, M.H. Yang, Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J. Hematol. Oncol. 12, 10 (2019). https://doi.org/10.1186/s13045-019-0699-4

    Article  Google Scholar 

  61. Y.J. Huang, T.H. Huang, V.K. Yadav, M.R. Sumitra, D.T. Tzeng et al., Preclinical investigation of ovatodiolide as a potential inhibitor of colon cancer stem cells via downregulating sphere-derived exosomal beta-catenin/STAT3/miR-1246 cargoes. Am. J. Cancer Res. 10, 2337–2354 (2020)

    CAS  Google Scholar 

  62. X. Deng, H. Ruan, X. Zhang, X. Xu, Y. Zhu et al., Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int. J. Cancer 146, 1700–1716 (2020). https://doi.org/10.1002/ijc.32608

    Article  CAS  Google Scholar 

  63. J. Ren, L. Ding, D. Zhang, G. Shi, Q. Xu et al., Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 8, 3932–3948 (2018). https://doi.org/10.7150/thno.25541

    Article  CAS  Google Scholar 

  64. J.L. Hu, W. Wang, X.L. Lan, Z.C. Zeng, Y.S. Liang et al., CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 18, 91 (2019). https://doi.org/10.1186/s12943-019-1019-x

    Article  CAS  Google Scholar 

  65. B. Zhou, K. Xu, X. Zheng, T. Chen, J. Wang et al., Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct. Target Ther. 5, 144 (2020). https://doi.org/10.1038/s41392-020-00258-9

    Article  CAS  Google Scholar 

  66. J. Silva, V. Garcia, M. Rodriguez, M. Compte, E. Cisneros et al., Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer 51, 409–418 (2012). https://doi.org/10.1002/gcc.21926

    Article  CAS  Google Scholar 

  67. L. Dong, W. Lin, P. Qi, M.D. Xu, X. Wu et al., Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 25, 1158–1166 (2016). https://doi.org/10.1158/1055-9965.EPI-16-0006

    Article  CAS  Google Scholar 

  68. D. Hu, Y. Zhan, K. Zhu, M. Bai, J. Han et al., Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer. Cell Physiol. Biochem. 51, 2704–2715 (2018). https://doi.org/10.1159/000495961

    Article  CAS  Google Scholar 

  69. B.K. Thakur, H. Zhang, A. Becker, I. Matei, Y. Huang et al., Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769 (2014). https://doi.org/10.1038/cr.2014.44

    Article  CAS  Google Scholar 

  70. D. Lucchetti, I.V. Zurlo, F. Colella, C. Ricciardi-Tenore, M. Di Salvatore et al., Mutational status of plasma exosomal KRAS predicts outcome in patients with metastatic colorectal cancer. Sci. Rep. 11, 22686 (2021). https://doi.org/10.1038/s41598-021-01668-7

    Article  CAS  Google Scholar 

  71. F. Aqil, R. Munagala, J. Jeyabalan, A.K. Agrawal, R. Gupta, Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J. 19, 1691–1702 (2017). https://doi.org/10.1208/s12248-017-0154-9

    Article  CAS  Google Scholar 

  72. M. Fujii, M. Shimokawa, S. Date, A. Takano, M. Matano et al., A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016). https://doi.org/10.1016/j.stem.2016.04.003

    Article  CAS  Google Scholar 

  73. C. Thery, K.W. Witwer, E. Aikawa, M.J. Alcaraz, J.D. Anderson et al., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018). https://doi.org/10.1080/20013078.2018.1535750

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Progression Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and YEN TJING LAING MEDICAL FOUNDATION in Taiwan.

Funding

Ministry of Science and Technology (109–2320-B-010–021 and 111–2628-B-A49-017 to W-L.H., 109–2314-B-075–081-MY3 to H-W. T., 109–2314-B-075–026 to C–C.L.); a grant from the Yen Tjing Ling Medical Foundation (CI-111–15 to W-L.H.), a grant from the Ministry of Health and Welfare, Center of Excellence for Cancer Research (MOHW107-TDU-B-211–114019, 111 W31208 to W-L.H.) and a grant from the Higher Education Sprout Project by the Ministry of Education (MOE) (110AC-D303 to W-L.H.). Taipei Veterans General Hospital (V111C-069 and V110C-189 to H-W.T.). The Innovative Research Grant of the National Health Research Institutes of Taiwan (NHRI-EX110-11010BI to W–H.Y.) and Ying Tsai Young Scholar Award (CMU108-YTY-04 to W–H.Y.).

Author information

Authors and Affiliations

Authors

Contributions

W–C.L., C–C.L. Y-Y.L., H-W.T. and W-L.H. wrote and revised the manuscript with assistance from W–H.Y. and Y-C.T.

Corresponding authors

Correspondence to Hao-Wei Teng or Wei-Lun Hwang.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors have agreed to publish this manuscript.

Availability of supporting data

Not applicable.

Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, WC., Lin, CC., Lin, YY. et al. Molecular actions of exosomes and their theragnostics in colorectal cancer: current findings and limitations. Cell Oncol. 45, 1043–1052 (2022). https://doi.org/10.1007/s13402-022-00711-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00711-7

Keywords

Navigation