Skip to main content

Advertisement

Log in

HDAC6: A unique HDAC family member as a cancer target

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

HDAC6, a structurally and functionally distinct member of the HDAC family, is an integral part of multiple cellular functions such as cell proliferation, apoptosis, senescence, DNA damage and genomic stability, all of which when deregulated contribute to carcinogenesis. Among several HDAC family members known so far, HDAC6 holds a unique position. It differs from the other HDAC family members not only in terms of its subcellular localization, but also in terms of its substrate repertoire and hence cellular functions. Recent findings have considerably expanded the research related to the substrate pool, biological functions and regulation of HDAC6. Studies in HDAC6 knockout mice highlighted the importance of HDAC6 as a cell survival player in stressful situations, making it an important anticancer target. There is ample evidence stressing the importance of HDAC6 as an anti-cancer synergistic partner of many chemotherapeutic drugs. HDAC6 inhibitors have been found to enhance the effectiveness of conventional chemotherapeutic drugs such as DNA damaging agents, proteasome inhibitors and microtubule inhibitors, thereby highlighting the importance of combination therapies involving HDAC6 inhibitors and other anti-cancer agents.

Conclusions

Here, we present a review on HDAC6 with emphasis on its role as a critical regulator of specific physiological cellular pathways which when deregulated contribute to tumorigenesis, thereby highlighting the importance of HDAC6 inhibitors as important anticancer agents alone and in combination with other chemotherapeutic drugs. We also discuss the synergistic anticancer effect of combination therapies of HDAC6 inhibitors with conventional chemotherapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

αTAT:

α Tubulin acetyltransferases

ADR:

Adriamycin

Adv:

Adavosertib

ALCL:

Anaplastic large cell lymphoma

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

AR:

Androgen receptor

BTK:

Bruton's tyrosine kinase

BTZ:

Bortezomib

CBP:

CREB-binding protein

CC:

Cholangiocarcinoma

CDK1:

Cyclin-dependent kinase 1

CDKi:

Cyclin-dependent kinase inhibitor

CRD-1:

Cell cycle regulatory domain 1

CHK:

Checkpoint kinase

CLL:

Chronic Lymphoid Leukemia

COX-2:

Cyclooxygenase– 2

CYLD:

Cylindromatosis

DHT:

Dihydrotestosterone

DLBCL:

Diffuse large B cell lymphoma

ECs:

Endothelial cells

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ER:

Estrogen Receptor

ERKs:

Extracellular signal-regulated kinases

FOXP3:

Forkhead boxp3

GC:

Gynecological cancer

Gli1:

Glioma-associated oncogene homolog 1

GPCRs:

G protein coupled receptors

GR:

Glucocorticoid receptor

GRK2:

G protein-coupled receptor kinase

GRP:

Glucose-regulated protein

GSCs:

Glioma stem cells

GSK3b:

Glycogen synthase kinase 3

G3BP1:

GTPase activating protein SH3 domain binding protein 1

HATs:

Histone acetyltransferases

HCC:

Hepatocellular carcinoma

HDAC6i:

HDAC6 inhibitors

HDACs:

Histone deacetylases

HEK:

Human embryonic kidney cells

HIF-1:

Hypoxia-inducible factor

HO-1:

Hemeoxygenase 1

HSF1:

Heat-shock factor 1

Hsp90:

Heat shock protein 90

IBC:

Inflammatory breast cancer

IIp:

Invasion inhibitory protein

IMiDs:

Immunomodulatory drugs

MAPK:

Microtubule associated protein kinase

MBC:

Metastatic breast cancer

MCL:

Mantle cell lymphoma

MEFs:

Mouse embryonic fibroblast

MLH1:

MutL homolog 1

MM:

Multiple myeloma

MMP9:

Matrix metallopeptidase 9

MMR:

Mismatch repair

MPT0G413:

N-hydroxy-4-((5-(4-methoxybenzoyl)- 1H-indol-1-yl)methyl)benzamide

MSCs:

Mesenchymal stem cells

MT:

Microtubule

MTOC:

Microtubule-organizing center

Mtor:

Mammalian target of rapamycin

NAD:

Nicotinamide adenine dinucleotide

NES:

Nuclear export signal

NHL:

Non-Hodgkin lymphoma

NLS:

Nuclear localization signal

Nrf-2:

Nuclear factor erythroid 2–related factor 2

NSCLC:

Non-Small Cell Lung Cancer

PCAF:

p300/CBP associated factor

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinases

Pkc:

Protein kinase C

PKCz:

Protein kinase C isoform z

PrEC:

Prostate epithelial cells

PTEN:

Phosphatase and tensin homolog

PTPN1:

Tyrosine-protein phosphatase non-receptor type 1

RMS:

Rhabdomyosarcoma

ROCK:

Rho-associated coiled-coil kinase

ROS:

Reactive oxygen species

RUNX2:

Runt-related transcription factor 2

SAHA:

Suberoylanilidehydroxamic acid

SIRT:

Sirtuins

TMZ:

Temozolomide

TPPP/p25:

Tubulin polymerization-promoting protein/p25

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

XIAP:

X-linked inhibitor of apoptosis

References

  1. A. Drazic, L.M. Myklebust, R. Ree, T. Arnesen, The world of protein acetylation. Biochem Biophys Acta BBA - Proteins Proteomics 1864, 1372–1401 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. C. Choudhary, C. Kumar, F. Gnad, M.L. Nielsen, M. Rehman, T.C. Walther, J.V. Olsen, M. Mann, Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. Y.C. Wang, S.E. Peterson, J.F. Loring, Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. 24, 143–160 (2014)

    Article  PubMed  Google Scholar 

  4. C. Seidel, M. Schnekenburger, M. Dicato, M. Diederich, Antiproliferative and proapoptotic activities of 4-hydroxybenzoic acid-based inhibitors of histone deacetylases. Cancer Lett. 343, 134–146 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. S. Spange, T. Wagner, T. Heinzel, O.H. Krämer, Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int. J. Biochem. Cell Biol. 41, 185–198 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. A.J. de Ruijter, A.H. van Gennip, H.N. Caron, S. Kemp, A.B. van Kuilenburg, Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  7. E.A. Olsen, Y.H. Kim, T.M. Kuzel, T.R. Pacheco, F.M. Foss, S. Parker, S.R. Frankel, C. Chen, J.L. Ricker, J.M. Arduino, M. Duvic, Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 3109–3115 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. R.L. Piekarz, R. Frye, M. Turner, J.J. Wright, S.L. Allen, M.H. Kirschbaum, J. Zain, H.M. Prince, J.P. Leonard, L.J. Geskin, C. Reeder, D. Joske, W.D. Figg, E.R. Gardner, S.M. Steinberg, E.S. Jaffe, M. Stetler-Stevenson, S. Lade, A.T. Fojo, S.E. Bates, Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 27, 5410–5117 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P.A. Marks, R. Breslow, Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25, 84–90 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. C. Campas-Moya, Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today Barc. 45, 787–795 (2009)

    Article  PubMed  Google Scholar 

  11. P.G. Richardson, R.L. Schlossman, M. Alsina, D.M. Weber, S.E. Coutre, C. Gasparetto, S. Mukhopadhyay, M.S. Ondovik, M. Khan, C.S. Paley, S. Lonial, PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib refractory myeloma. Blood 122, 2331–2337 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. C. Seidel, M. Schnekenburger, M. Dicato, M. Diesderich, Histone deacetylase 6 in health and disease. Epigenomics 7, 103–108 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. S.N. Batchu, A.S. Brijmohan, A. Advani, The therapeutic hope for HDAC6 inhibitors in malignancy and chronic disease. Clin. Sci. 130, 987–1003 (2016)

    Article  CAS  Google Scholar 

  14. Y. Liu, L. Peng, E. Seto, S. Huang, Y. Qiu, Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation. J. Biol. Chem. 287, 29168–29174 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Zou, Y. Wu, M. Navre, B.C. Sang, Characterization of the two catalytic domains in histone deacetylase 6. Biochem. Biophys. Res. Commun. 341, 45–50 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. C.M. Grozinger, C.A. Hassig, S.L. Schreiber, Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. U.S.A. 96, 4868–4873 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Zhang, B. Gilquin, S. Khochbin, P. Matthias, Two catalytic domains are required for protein deacetylation. J. Biol. Chem. 281, 2401–2404 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Z. Kutil, L. Skultetyova, D. Rauh, M. Meleshin, I. Snajdr, Z. Novakova, J. Mikesova, J. Pavlicek, M. Hadzima, P. Baranova, B. Havlinova, P. Majer, M. Schutkowski, C. Barinka, The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries. FASEB J. 33, 4035–4045 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. J.-Y. Wu, S. Xiang, M. Zhang, B. Fang, H. Huang, O.K. Kwon, Y. Zhao, Z. Yang, W. Bai, G. Bepler, X.M. Zhang, Histone deacetylase 6 (HDAC6) deacetylates extracellular signal-regulated kinase 1 (ERK1) and thereby stimulates ERK1 activity. J. Biol. Chem. 293, 1976–1993 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. K.A. Williams, M. Zhang, S. Xiang, C. Hu, J.Y. Wu, S. Zhang, M. Ryan, A.D. Cox, C.J. Der, B. Fang, J. Koomen, E. Haura, G. Bepler, S.V. Nicosia, P. Matthias, C. Wang, W. Bai, X. Zhang, Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J. Biol. Chem. 288, 33156–33170 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M.L. Selenica, L. Benner, S.B. Housley, B. Manchec, D.C. Lee, K.R. Nash, J. Kalin, J.A. Bergman, A. Kozikowski, M.N. Gordon, D. Morgan, Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res. Ther. 6, 12 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  22. L. Zhang, S. Sheng, C. Qin, The role of HDAC6 in Alzheimer’s disease. J. Alzheimers Dis. 33, 283–295 (2013)

    Article  PubMed  Google Scholar 

  23. Y.S. Gao, C.C. Hubbert, T.P. Yao, The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J. Biol. Chem. 285, 11219–11226 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. W. Liu, L.X. Fan, X. Zhou, W.E. Sweeney, E.D. Avner, X. Li, HDAC6 regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation in renal epithelial cells. PLoS ONE 7, e49418 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y. L. Deribe, P. Wild, A. Chandrashaker, J. Curak, M. H. H. Schmidt, Y. Kalaidzidis, N. Milutinovic, I. Kratchmarova, L. Buerkle, M. J. Fetchko, P. Schmidt, S. Kittanakom, K. R. Brown, I. Jurisica, B. Blagoev, M. Zerial, I. Stagljar, and I. Dikic, Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal 2, ra84 (2009)

  26. Y. Li, X. Zhang, R.D. Polakiewicz, T.P. Yao, M.J. Comb, HDAC6 is required for epidermal growth factor-induced beta-catenin nuclear localization. J. Biol. Chem. 283, 12686–12690 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. Gu, D. Wang, J. Zhang, Y. Zhu, Y. Li, H. Chen, M. Shi, X. Wang, B. Shen, X. Deng, Q. Zhan, G. Wei, C. Peng, GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer. Cancer Lett. 380, 434–431 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Meng, L.F. Jia, Y.H. Gan, PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumour inhibition. Oncogene 35, 2333–2344 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. M. Tesio, A. Trinquand, E. Macintyre, V. Asnafi, Oncogenic PTEN functions and models in T-cell malignancies. Oncogene 35, 3887–3896 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zheng, X. Yang, C. Wang, S. Zhang, Z. Wang, M. Li, Y. Wang, X. Wang, HDAC6, modulated by miR-206, promotes endometrial cancer progression through the PTEN/AKT/mTOR pathway. Sci. Rep. 10, 3576 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S.A. Wickström, K.C. Masoumi, S. Khochbin, R. Fässler, R. Massoumi, CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J. 29, 131–144 (2010)

    Article  PubMed  Google Scholar 

  32. G.I. Aldana-Masangkay, K.M. Sakamoto, The role of HDAC6 in cancer. J. Biomed. Biotechnol. 2011, 875824 (2011)

    Article  PubMed  Google Scholar 

  33. Y. Ishikawa, K. Tsunoda, M. Shibazaki, K. Takahashi, T. Akasaka, T. Masuda, C. Maesawa, Downregulation of cylindromatosis gene, CYLD, confers a growth advantage on malignant melanoma cells while negatively regulating their migration activity. Int. J. Oncol. 41, 53–60 (2012)

    CAS  PubMed  Google Scholar 

  34. S.J. Haggarty, K.M. Koeller, J.C. Wong, C.M. Grozinger, S.L. Schreiber, Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. U.S.A. 100, 4389–4394 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Massoumi, K. Chmielarska, K. Hennecke, A. Pfeifer, R. Fässler, Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125, 665–677 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. M.J. Chuang, S.T. Wu, S.H. Tang, X.M. Lai, H.C. Lai, K.H. Hsu, K.H. Sun, G.H. Sun, S.Y. Chang, D.S. Yu, P.W. Hsiao, S.M. Huang, T.L. Cha, The HDAC inhibitor LBH589 induces ERK-dependent prometaphase arrest in prostate cancer via HDAC6 inactivation and down-regulation. PLoS ONE 8, e73401 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Hubbert, A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.F. Wang, T.P. Yao, HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. A. Matsuyama, T. Shimazu, Y. Sumida, A. Saito, Y. Yoshimatsu, D. Seigneurin-Berny, H. Osada, Y. Komatsu, N. Nishino, S. Khochbin, S. Horinouchi, M. Yoshida, In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 21, 6820–6831 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Zhang, N. Li, C. Caron, G. Matthias, D. Hess, S. Khochbin, P. Matthias, HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22, 1168–1179 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Conacci-Sorrell, C. Ngouenet, R.N. Eisenman, Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation. Cell 142, 480–493 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Creppe, L. Malinouskaya, M.L. Volvert, M. Gillard, P. Close, O. Malaise, S. Laguesse, I. Cornez, S. Rahmouni, S. Ormenese, S. Belachew, B. Malgrange, J.P. Chapelle, U. Siebenlist, G. Moonen, A. Chariot, L. Nguyen, Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136, 551–564 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. S.W. L’Hernault, J.L. Rosenbaum, Chlamydomonas alpha-tubulin is posttranslationally modified in the flagella during flagellar assembly. J. Cell Biol. 97, 258–263 (1983)

    Article  PubMed  Google Scholar 

  43. N. Ohkawa, S. Sugisaki, E. Tokunaga, K. Fujitani, T. Hayasaka, M. Setou, K. Inokuchi, N-acetyltransferase ARD1-NAT1 regulates neuronal dendritic development. Genes Cells 13, 1171–1183 (2008)

    CAS  PubMed  Google Scholar 

  44. X. Zhang, Z. Yuan, Y. Zhang, S. Yong, A. Salas-Burgos, J. Koomen, N. Olashaw, J.T. Parsons, X.J. Yang, S.R. Dent, T.P. Yao, W.S. Lane, E. Seto, HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27, 197–213 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. H. Wu, J.T. Parsons, Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol. 120, 1417–1426 (1993)

    Article  CAS  PubMed  Google Scholar 

  46. N.S. Bryce, E.S. Clark, J.L. Leysath, J.D. Currie, D.J. Webb, A.M. Weaver, Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr. Biol. 15, 1276–1285 (2005)

    Article  CAS  PubMed  Google Scholar 

  47. D. Kaluza, J. Kroll, S. Gesierich, T.P. Yao, R.A. Boon, E. Hergenreider, M. Tjwa, L. Rössig, E. Seto, H.G. Augustin, A.M. Zeiher, S. Dimmeler, C. Urbich, Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J. 30, 4142–4156 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. V. Lafarga, I. Aymerich, O. Tapia, F. Mayor, P. Penela, A novel GRK2/HDAC6 interaction modulates cell spreading and motility. EMBO J. 31, 856–869 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. P. Penela, V. Lafarga, O. Tapia, V. Rivas, L. Nogués, E. Lucas, R. Vila-Bedmar, C. Murga, and F. Mayor, Roles of GRK2 in cell signaling beyond GPCR desensitization: GRK2-HDAC6 interaction modulates cell spreading and motility. Sci. Signal 5, pt3 (2012)

  50. H.H. Chuang, M.S. Huang, P.H. Wang, Y.P. Liu, M. Hsiao, C.J. Yang, Pin1 Is Involved in HDAC6-mediated Cancer Cell Motility. Int. J. Med. Sci. 15, 1573–1581 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. H.H. Chuang, J.F. Hsu, H.L. Chang, P.H. Wang, P.J. Wei, D.W. Wu, M.S. Huang, M. Hsiao, C.J. Yang, Pin1 coordinates HDAC6 upregulation with cell migration in lung cancer cells. Int. J. Med. Sci. 17, 2635–2643 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. Liu, W. Luan, Y. Zhang, J. Gu, Y. Shi, Y. Yang, Z. Feng, F. Qi, HDAC6 interacts with PTPN1 to enhance melanoma cells progression. Biochem. Biophys. Res. Commun. 495, 2630–2636 (2018)

    Article  CAS  PubMed  Google Scholar 

  53. C. Featherstone, S.P. Jackson, Ku, a DNA repair protein with multiple cellular functions? Mutat. Res. 434, 3–15 (1999)

    Article  CAS  PubMed  Google Scholar 

  54. H.Y. Cohen, S. Lavu, K.J. Bitterman, B. Hekking, T.A. Imahiyerobo, C. Miller, R. Frye, H. Ploegh, B.M. Kessler, D.A. Sinclair, Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell 13, 627–638 (2004)

    Article  CAS  PubMed  Google Scholar 

  55. C. Subramanian, J.A. Jarzembowski, A.W. Opipari, V.P. Castle, R.P. Kwok, HDAC6 deacetylates Ku70 and regulates Ku70-Bax binding in neuroblastoma. Neoplasia 13, 726–734 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. E. Kerr, C. Holohan, K.M. McLaughlin, J. Majkut, S. Dolan, K. Redmond, J. Riley, K. McLaughlin, I. Stasik, M. Crudden, S. Van Schaeybroeck, C. Fenning, R. O’Connor, P. Kiely, M. Sgobba, D. Haigh, P.G. Johnston, D.B. Longley, Identification of an acetylation-dependant Ku70/FLIP complex that regulates FLIP expression and HDAC inhibitor-induced apoptosis. Cell Death Differ. 19, 1317–1327 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. H. Wang, M.P. Holloway, L. Ma, Z.A. Cooper, M. Riolo, A. Samkari, K.S. Elenitoba-Johnson, Y.E. Chin, R.A. Altura, Acetylation directs survivin nuclear localization to repress STAT3 oncogenic activity. J. Biol. Chem. 285, 36129–36137 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. M.T. Riolo, Z.A. Cooper, M.P. Holloway, Y. Cheng, C. Bianchi, E. Yakirevich, L. Ma, Y.E. Chin, R.A. Altura, Histone deacetylase 6 (HDAC6) deacetylates survivin for its nuclear export in breast cancer. J. Biol. Chem. 287, 10885–10893 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. C. Boyault, Y. Zhang, S. Fritah, C. Caron, B. Gilquin, S. H. Kwon, C. Garrido, T. P. Yao, C. Vourc’h, P. Matthias, and S. Khochbin, HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 21, 2172–2181 (2007)

  60. Y. Kawaguchi, J.J. Kovacs, A. McLaurin, J.M. Vance, A. Ito, T.P. Yao, The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003)

    Article  CAS  PubMed  Google Scholar 

  61. C. Boyault, B. Gilquin, Y. Zhang, V. Rybin, E. Garman, W. Meyer-Klaucke, P. Matthias, C.W. Müller, S. Khochbin, HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 25, 3357–3366 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. A. Iwata, B.E. Riley, J.A. Johnston, R.R. Kopito, HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282–40292 (2005)

    Article  CAS  PubMed  Google Scholar 

  63. J.A. Olzmann, L.S. Chin, Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4, 85–87 (2008)

    Article  CAS  PubMed  Google Scholar 

  64. K.P. Liu, D. Zhou, D.Y. Ouyang, L.H. Xu, Y. Wang, L.X. Wang, H. Pan, X.H. He, LC3B-II deacetylation by histone deacetylase 6 is involved in serum-starvation-induced autophagic degradation. Biochem. Biophys. Res. Commun. 441, 970–975 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. S. Pankiv, T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Øvervatn, G. Bjørkøy, T. Johansen, p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007)

    Article  CAS  PubMed  Google Scholar 

  66. C. Fusco, L. Micale, M. Egorov, M. Monti, E.V. D’Addetta, B. Augello, F. Cozzolino, A. Calcagnì, A. Fontana, R.S. Polishchuk, G. Didelot, A. Reymond, P. Pucci, G. Merla, The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome. PLoS ONE 7, e40440 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. J.Y. Lee, H. Koga, Y. Kawaguchi, W. Tang, E. Wong, Y.S. Gao, U.B. Pandey, S. Kaushik, E. Tresse, J. Lu, J.P. Taylor, A.M. Cuervo, T.P. Yao, HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29, 969–980 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. W.J. Liu, L. Ye, W.F. Huang, L.J. Guo, Z.G. Xu, H.L. Wu, C. Yang, H.F. Liu, p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol. Biol. Lett. 21, 29 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  69. G. Bjørkøy, T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, T. Johansen, p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  70. M.L. Seibenhener, J.R. Babu, T. Geetha, H.C. Wong, N.R. Krishna, M.W. Wooten, Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell Biol. 24, 8055–8068 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. C. Dai, L. Whitesell, A.B. Rogers, S. Lindquist, Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. P. Bali, M. Pranpat, J. Bradner, M. Balasis, W. Fiskus, F. Guo, K. Rocha, S. Kumaraswamy, S. Boyapalle, P. Atadja, E. Seto, K. Bhalla, Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280, 26729–26734 (2005)

    Article  CAS  PubMed  Google Scholar 

  73. B.T. Scroggins, K. Robzyk, D. Wang, M.G. Marcu, S. Tsutsumi, K. Beebe, R.J. Cotter, S. Felts, D. Toft, L. Karnitz, N. Rosen, L. Neckers, An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell 25, 151–159 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J.J. Kovacs, P.J. Murphy, S. Gaillard, X. Zhao, J.T. Wu, C.V. Nicchitta, M. Yoshida, D.O. Toft, W.B. Pratt, T.P. Yao, HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005)

    Article  CAS  PubMed  Google Scholar 

  75. P.J. Murphy, Y. Morishima, J.J. Kovacs, T.P. Yao, W.B. Pratt, Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem. 280, 33792–33799 (2005)

    Article  CAS  PubMed  Google Scholar 

  76. C. Caron, C. Boyault, S. Khochbin, Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. BioEssays 27, 408–415 (2005)

    Article  CAS  PubMed  Google Scholar 

  77. D.R. Hurst, A. Mehta, B.P. Moore, P.A. Phadke, W.J. Meehan, M.A. Accavitti, L.A. Shevde, J.E. Hopper, Y. Xie, D.R. Welch, R.S. Samant, Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem. Biophys. Res. Commun. 348, 1429–1435 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. X. Kong, Z. Lin, D. Liang, D. Fath, N. Sang, J. Caro, Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol. Cell Biol. 26, 2019–2028 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. J.J. Westendorf, S.K. Zaidi, J.E. Cascino, R. Kahler, A.J. van Wijnen, J.B. Lian, M. Yoshida, G.S. Stein, X. Li, Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol. Cell Biol. 22, 7982–7992 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Z. Yu, W. Zhang, B.C. Kone, Histone deacetylases augment cytokine induction of the iNOS gene. J. Am. Soc. Nephrol. 13, 2009–2017 (2002)

    Article  CAS  PubMed  Google Scholar 

  81. D. Girdwood, D. Bumpass, O.A. Vaughan, A. Thain, L.A. Anderson, A.W. Snowden, E. Garcia-Wilson, N.D. Perkins, R.T. Hay, P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043 (2003)

    Article  CAS  PubMed  Google Scholar 

  82. L. Ling, P.E. Lobie, RhoA/ROCK activation by growth hormone abrogates p300/histone deacetylase 6 repression of Stat5-mediated transcription. J. Biol. Chem. 279, 32737 (2004)

    Article  CAS  PubMed  Google Scholar 

  83. H. Ma, C. Nguyen, K.S. Lee, M. Kahn, Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene 24, 3619–3631 (2005)

    Article  CAS  PubMed  Google Scholar 

  84. Y. Han, H.M. Jeong, Y.H. Jin, Y.J. Kim, H.G. Jeong, C.Y. Yeo, K.Y. Lee, Acetylation of histone deacetylase 6 by p300 attenuates its deacetylase activity. Biochem. Biophys. Res. Commun. 383, 88–92 (2009)

    Article  CAS  PubMed  Google Scholar 

  85. I. Fernandes, Y. Bastien, T. Wai, K. Nygard, R. Lin, O. Cormier, H.S. Lee, F. Eng, N.R. Bertos, N. Pelletier, S. Mader, V.K. Han, X.J. Yang, J.H. White, Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol. Cell 11, 139–150 (2003)

    Article  CAS  PubMed  Google Scholar 

  86. J.M. Amann, J. Nip, D.K. Strom, B. Lutterbach, H. Harada, N. Lenny, J.R. Downing, S. Meyers, S.W. Hiebert, ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol. Cell Biol. 21, 6470–6483 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. A. Palijan, I. Fernandes, Y. Bastien, L. Tang, M. Verway, M. Kourelis, L.E. Tavera-Mendoza, Z. Li, V. Bourdeau, S. Mader, X.J. Yang, J.H. White, Function of histone deacetylase 6 as a cofactor of nuclear receptor coregulator LCoR. J. Biol. Chem. 284, 30264–30274 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. R. Winkler, V. Benz, M. Clemenz, M. Bloch, A. Foryst-Ludwig, S. Wardat, N. Witte, M. Trappiel, P. Namsolleck, K. Mai, J. Spranger, G. Matthias, T. Roloff, O. Truee, K. Kappert, M. Schupp, P. Matthias, U. Kintscher, Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis. Diabetes 61, 513–523 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. J.M. Solomon, R. Pasupuleti, L. Xu, T. McDonagh, R. Curtis, P.S. DiStefano, L.J. Huber, Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell Biol. 26, 28–38 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. C. Blackburn, C. Barrett, J. Chin, K. Garcia, K. Gigstad, A. Gould, J. Gutierrez, S. Harrison, K. Hoar, C. Lynch, R.S. Rowland, C. Tsu, J. Ringeling, H. Xu, Potent histone deacetylase inhibitors derived from 4-(aminomethyl)-N-hydroxybenzamide with high selectivity for the HDAC6 isoform. J. Med. Chem. 56, 7201–7211 (2013)

    Article  CAS  PubMed  Google Scholar 

  91. S.-Y. Park, S. Phorl, S. Jung, K. Sovannarith, S. Lee, S. Noh, M. Han, R. Naskar, J.-Y. Kim, Y.-J. Choi, J.-Y. Lee, HDAC6 deficiency induces apoptosis in mesenchymal stem cells through p53 K120 acetylation. Biochem. Biophys. Res. Commun. 494, 51–56 (2017)

    Article  CAS  PubMed  Google Scholar 

  92. M. Zhang, C. Hu, N. Moses, J. Haakenson, S. Xiang, D. Quan, B. Fang, Z. Yang, W. Bai, G. Bepler, G.M. Li, X.M. Zhang, HDAC6 regulates DNA damage response via deacetylating MLH1. J. Biol. Chem. 294, 5813–5826 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. T. Ozaki, D. Wu, H. Sugimoto, H. Nagase, A. Nakagawara, Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis. 4, e610 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. W. Yang, Y. Liu, R. Gao, H. Yu, T. Sun, HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett. 415, 164–176 (2018)

    Article  CAS  PubMed  Google Scholar 

  95. G.W. Kim, D.H. Lee, S.K. Yeon, Y.H. Jeon, J. Yoo, S.W. Lee, S.H. Kwon, Temozolomide-resistant Glioblastoma Depends on HDAC6 Activity Through Regulation of DNA Mismatch Repair. Anticancer Res. 39, 6731–6741 (2019)

    Article  CAS  PubMed  Google Scholar 

  96. O.H. Krämer, S. Mahboobi, A. Sellmer, Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol. Sci. 35, 501–509 (2014)

    Article  PubMed  Google Scholar 

  97. Y. Wu, S.W. Song, J. Sun, J.M. Bruner, G.N. Fuller, W. Zhang, IIp45 inhibits cell migration through inhibition of HDAC6. J. Biol. Chem. 285, 3554–3560 (2010)

    Article  CAS  PubMed  Google Scholar 

  98. N. Tokési, A. Lehotzky, I. Horváth, B. Szabó, J. Oláh, P. Lau, J. Ovádi, Drugging the HDAC6-HSP90 interplay in malignant cells. J. Biol. Chem. 285, 17896–17906 (2010)

    PubMed  PubMed Central  Google Scholar 

  99. J. Zhou, C.C. Vos, A. Gjyrezi, M. Yoshida, F.R. Khuri, F. Tamanoi, P. Giannakakou, The protein farnesyltransferase regulates HDAC6 activity in a microtubule-dependent manner. J. Biol. Chem. 284, 9648–9655 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. S. Chen, G.C. Owens, H. Makarenkova, D.B. Edelman, HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS ONE 5, e10848 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  101. K. Leroy, Z. Yilmaz, J.P. Brion, Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol. 33, 43–55 (2007)

    Article  CAS  PubMed  Google Scholar 

  102. E.N. Pugacheva, S.A. Jablonski, T.R. Hartman, E.P. Henske, E.A. Golemis, HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. M. Watabe, T. Nakaki, Protein kinase CK2 regulates the formation and clearance of aggresomes in response to stress. J. Cell Sci. 124, 1519–1532 (2011)

    Article  CAS  PubMed  Google Scholar 

  104. J. Zhu, C.B. Coyne, S.N. Sarkar, PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and β-catenin. EMBO J. 30, 4838–4849 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Y. Du, M.L. Seibenhener, J. Yan, J. Jiang, M.C. Wooten, aPKC phosphorylation of HDAC6 results in increased deacetylation activity. PLoS ONE 10, e0123191 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  106. A.V. Schofield, C. Gamell, R. Suryadinata, B. Sarcevic, O. Bernard, Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation. J. Biol. Chem. 288, 7907–7917 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. A.V. Schofield, C. Gamell, O. Bernard, Tubulin polymerization promoting protein 1 (TPPP1) increases β-catenin expression through inhibition of HDAC6 activity in U2OS osteosarcoma cells. Biochem. Biophys. Res. Commun. 436, 571–577 (2013)

    Article  CAS  PubMed  Google Scholar 

  108. N.O. Deakin, C.E. Turner, Paxillin inhibits HDAC6 to regulate microtubule acetylation, Golgi structure, and polarized migration. J. Cell Biol. 206, 395–413 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. N. Kasai, A. Kadeer, M. Kajita, S. Saitoh, S. Ishikawa, T. Maruyama, Y. Fujita, The paxillin-plectin-EPLIN complex promotes apical elimination of RasV12-transformed cells by modulating HDAC6-regulated tubulin acetylation. Sci. Rep. 8, 2097 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tala, X. Sun, J. Chen, L. Zhang, N. Liu, J. Zhou, D. Li, and M. Liu, Microtubule stabilization by Mdp3 is partially attributed to its modulation of HDAC6 in addition to its association with tubulin and microtubules. PLoS One 9, e90932 (2014)

  111. L.M. Salemi, A.W. Almawi, K.J. Lefebvre, C. Schild-Poulter, Aggresome formation is regulated by RanBPM through an interaction with HDAC6. Biol. Open 3, 418–430 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  112. A. P. Mansini, M. J. Lorenzo Pisarello, K. M. Thelen, M. Cruz-Reyes, E. Peixoto, S. Jin, B. N. Howard, C. E. Trussoni, G. B. Gajdos, N. F. LaRusso, M. J. Perugorria, J. M. Banales, and S. A. Gradilone, MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma. Hepatol. Baltim. Md. 68, 561–573 (2018)

  113. T. Lwin, X. Zhao, F. Cheng, X. Zhang, A. Huang, B. Shah, Y. Zhang, L.C. Moscinski, Y.S. Choi, A.P. Kozikowski, J.E. Bradner, W.S. Dalton, E. Sotomayor, J. Tao, A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas. J. Clin. Invest. 123, 4612–4626 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. K. Okuda, A. Ito, T. Uehara, Regulation of histone deacetylase 6 activity via S-nitrosylation. Biol. Pharm. Bull. 38, 1434–1437 (2015)

    Article  CAS  PubMed  Google Scholar 

  115. C.A. Bradbury, F.L. Khanim, R. Hayden, C.M. Bunce, D.A. White, M.T. Drayson, C. Craddock, B.M. Turner, Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19, 1751–1759 (2005)

    Article  CAS  PubMed  Google Scholar 

  116. B. Hackanson, L. Rimmele, M. Benkißer, M. Abdelkarim, M. Fliegauf, M. Jung, M. Lübbert, HDAC6 as a target for antileukemic drugs in acute myeloid leukemia. Leuk. Res. 36, 1055–1062 (2012)

    Article  CAS  PubMed  Google Scholar 

  117. S.L. Zhang, H.Y. Zhu, B.Y. Zhou, Y. Chu, J.R. Huo, Y.Y. Tan, D.L. Liu, Histone deacetylase 6 is overexpressed and promotes tumor growth of colon cancer through regulation of the MAPK/ERK signal pathway. Onco. Targets Ther. 12, 2409–2419 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. S. Saji, M. Kawakami, S. Hayashi, N. Yoshida, M. Hirose, S. Horiguchi, A. Itoh, N. Funata, S.L. Schreiber, M. Yoshida, M. Toi, Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 24, 4531–4539 (2005)

    Article  CAS  PubMed  Google Scholar 

  119. T. Sakuma, K. Uzawa, T. Onda, M. Shiiba, H. Yokoe, T. Shibahara, H. Tanzawa, Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int. J. Oncol. 29, 117–124 (2006)

    CAS  PubMed  Google Scholar 

  120. Y.S. Lee, K.H. Lim, X. Guo, Y. Kawaguchi, Y. Gao, T. Barrientos, P. Ordentlich, X.F. Wang, C.M. Counter, T.P. Yao, The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res. 68, 7561–7569 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. P. Putcha, J. Yu, R. Rodriguez-Barrueco, L. Saucedo-Cuevas, P. Villagrasa, E. Murga-Penas, S.N. Quayle, M. Yang, V. Castro, D. Llobet-Navas, D. Birnbaum, P. Finetti, W.A. Woodward, F. Bertucci, M.L. Alpaugh, A. Califano, J. Silva, HDAC6 activity is a non-oncogene addiction hub for inflammatory breast cancers. Breast Cancer Res. 17, 149 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  122. A. Keremu, A. Aimaiti, Z. Liang, X. Zou, Role of the HDAC6/STAT3 pathway in regulating PD-L1 expression in osteosarcoma cell lines. Cancer Chemother. Pharmacol. 83, 255–264 (2019)

    Article  CAS  PubMed  Google Scholar 

  123. C.S. Chen, S.C. Weng, P.H. Tseng, H.P. Lin, Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J. Biol. Chem. 280, 38879–38887 (2005)

    Article  CAS  PubMed  Google Scholar 

  124. I.A. Kim, M. No, J.M. Lee, J.H. Shin, J.S. Oh, E.J. Choi, I.H. Kim, P. Atadja, E.J. Bernhard, Epigenetic modulation of radiation response in human cancer cells with activated EGFR or HER-2 signaling: potential role of histone deacetylase 6. Radiother. Oncol. 92, 125–132 (2009)

    Article  CAS  PubMed  Google Scholar 

  125. S.C. Tien, Z.F. Chang, Oncogenic Shp2 disturbs microtubule regulation to cause HDAC6-dependent ERK hyperactivation. Oncogene 33, 2938–2946 (2014)

    Article  CAS  PubMed  Google Scholar 

  126. Q.Y. Zhu, Z. Wang, C. Ji, L. Cheng, Y.L. Yang, J. Ren, Y.H. Jin, Q.J. Wang, X.J. Gu, Z.G. Bi, G. Hu, Y. Yang, C6-ceramide synergistically potentiates the anti-tumor effects of histone deacetylase inhibitors via AKT dephosphorylation and α-tubulin hyperacetylation both in vitro and in vivo. Cell Death Dis. 2, e117 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  127. S. Aoyagi, T.K. Archer, Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol. 15, 565–567 (2005)

    Article  CAS  PubMed  Google Scholar 

  128. S. Tsutsumi, K. Beebe, L. Neckers, Impact of heat-shock protein 90 on cancer metastasis. Future Oncol. 5, 679–688 (2009)

    Article  CAS  PubMed  Google Scholar 

  129. Y.Z. Gu, Q. Xue, Y.J. Chen, G.H. Yu, M.D. Qing, Y. Shen, M.Y. Wang, Q. Shi, X.G. Zhang, Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum. Immunol. 74, 267–276 (2013)

    Article  CAS  PubMed  Google Scholar 

  130. J. Wen, J. Fu, Y. Ling, W. Zhang, MIIP accelerates epidermal growth factor receptor protein turnover and attenuates proliferation in non-small cell lung cancer. Oncotarget 7, 9118–9134 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  131. S.L. Zhang, X. Du, L.N. Tan, F.H. Deng, B.Y. Zhou, H.J. Zhou, H.Y. Zhu, Y. Chu, D.L. Liu, Y.Y. Tan, SET7 interacts with HDAC6 and suppresses the development of colon cancer through inactivation of HDAC6. Am. J. Transl. Res. 12, 602–611 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  132. F. Ikeda, I. Dikic, CYLD in ubiquitin signaling and tumor pathogenesis. Cell 125, 643–645 (2006)

    Article  CAS  PubMed  Google Scholar 

  133. M. Bazzaro, Z. Lin, A. Santillan, M.K. Lee, M.C. Wang, K.C. Chan, R.E. Bristow, R. Mazitschek, J. Bradner, R.B. Roden, Ubiquitin proteasome system stress underlies synergistic killing of ovarian cancer cells by bortezomib and a novel HDAC6 inhibitor. Clin. Cancer Res. 14, 7340–7347 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Y. Zilberman, C. Ballestrem, L. Carramusa, R. Mazitschek, S. Khochbin, A. Bershadsky, Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J. Cell Sci. 122, 3531–3541 (2009)

    Article  CAS  PubMed  Google Scholar 

  135. L. Zhang, N. Liu, S. Xie, X. He, J. Zhou, M. Liu, D. Li, HDAC6 regulates neuroblastoma cell migration and may play a role in the invasion process. Cancer Biol. Ther. 15, 1561–1570 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. M. Rey, M. Irondelle, F. Waharte, F. Lizarraga, P. Chavrier, HDAC6 is required for invadopodia activity and invasion by breast tumor cells. Eur. J. Cell Biol. 90, 128–135 (2011)

    Article  CAS  PubMed  Google Scholar 

  137. G.P. Gupta, J. Massagué, Cancer metastasis: building a framework. Cell 127, 679–695 (2006)

    Article  CAS  PubMed  Google Scholar 

  138. K. Kanno, S. Kanno, H. Nitta, N. Uesugi, T. Sugai, T. Masuda, G. Wakabayashi, C. Maesawa, Overexpression of histone deacetylase 6 contributes to accelerated migration and invasion activity of hepatocellular carcinoma cells. Oncol. Rep. 28, 867–873 (2012)

    Article  CAS  PubMed  Google Scholar 

  139. K. Azuma, T. Urano, K. Horie-Inoue, S. Hayashi, R. Sakai, Y. Ouchi, S. Inoue, Association of estrogen receptor alpha and histone deacetylase 6 causes rapid deacetylation of tubulin in breast cancer cells. Cancer Res. 69, 2935–2940 (2009)

    Article  CAS  PubMed  Google Scholar 

  140. T.Q. Pham, K. Robinson, L. Xu, M.N. Pavlova, S.X. Skapek, E.Y. Chen, HDAC6 promotes growth, migration/invasion, and self-renewal of rhabdomyosarcoma. Oncogene 40, 578–591 (2021)

    Article  CAS  PubMed  Google Scholar 

  141. D. Li, S. Xie, Y. Ren, L. Huo, J. Gao, D. Cui, M. Liu, J. Zhou, Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner. Protein Cell 2, 150–160 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. J.H. Park, S.H. Kim, M.C. Choi, J. Lee, D.Y. Oh, S.A. Im, Y.J. Bang, T.Y. Kim, Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors. Biochem. Biophys. Res. Commun. 368, 318–322 (2008)

    Article  CAS  PubMed  Google Scholar 

  143. D.Z. Qian, S.K. Kachhap, S.J. Collis, H.M. Verheul, M.A. Carducci, P. Atadja, R. Pili, Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 66, 8814–8821 (2006)

    Article  CAS  PubMed  Google Scholar 

  144. H.W. Ryu, H.R. Won, D.H. Lee, S.H. Kwon, HDAC6 regulates sensitivity to cell death in response to stress and post-stress recovery. Cell Stress Chaperones 22, 253–261 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Z. Lv, X. Weng, C. Du, C. Zhang, H. Xiao, X. Cai, S. Ye, J. Cheng, C. Ding, H. Xie, L. Zhou, J. Wu, S. Zheng, Downregulation of HDAC6 promotes angiogenesis in hepatocellular carcinoma cells and predicts poor prognosis in liver transplantation patients. Mol. Carcinog. 55, 1024–1033 (2016)

    Article  CAS  PubMed  Google Scholar 

  146. M. Sharma, P. Jha, P. Verma, M. Chopra, Combined comparative molecular field analysis, comparative molecular similarity indices analysis, molecular docking and molecular dynamics studies of histone deacetylase 6 inhibitors. Chem. Biol. Drug Des. 93, 910–925 (2019)

    Article  CAS  PubMed  Google Scholar 

  147. J. Jochems, J. Boulden, B.G. Lee, J.A. Blendy, M. Jarpe, R. Mazitschek, J.H. Van Duzer, S. Jones, O. Berton, Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 39, 389–400 (2014)

    Article  CAS  Google Scholar 

  148. J.-H. Lee, A. Mahendran, Y. Yao, L. Ngo, G. Venta-Perez, M.L. Choy, N. Kim, W.-S. Ham, R. Breslow, P.A. Marks, Development of a histone deacetylase 6 inhibitor and its biological effects. Proc. Natl. Acad. Sci. U. S. A. 110, 15704–15709 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. J.H. Kalin, J.A. Bergman, Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J. Med. Chem. 56, 6297–6313 (2013)

    Article  CAS  PubMed  Google Scholar 

  150. D.V. Smil, S. Manku, Y.A. Chantigny, S. Leit, A. Wahhab, T.P. Yan, M. Fournel, C. Maroun, Z. Li, A.-M. Lemieux, A. Nicolescu, J. Rahil, S. Lefebvre, A. Panetta, J.M. Besterman, R. Déziel, Novel HDAC6 isoform selective chiral small molecule histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 19, 688–692 (2009)

    Article  CAS  PubMed  Google Scholar 

  151. Y. Chen, M. Lopez-Sanchez, D.N. Savoy, D.D. Billadeau, G.S. Dow, A.P. Kozikowski, A series of potent and selective, triazolylphenyl-based histone deacetylases inhibitors with activity against pancreatic cancer cells and Plasmodium falciparum. J. Med. Chem. 51, 3437–3448 (2008)

    Article  CAS  PubMed  Google Scholar 

  152. A.P. Kozikowski, S. Tapadar, D.N. Luchini, K.H. Kim, D.D. Billadeau, Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J. Med. Chem. 51, 4370–4373 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. E.S. Inks, B.J. Josey, S.R. Jesinkey, C.J. Chou, A novel class of small molecule inhibitors of HDAC6. ACS Chem. Biol. 7, 331–339 (2012)

    Article  CAS  PubMed  Google Scholar 

  154. C.-W. Yu, P.-T. Chang, L.-W. Hsin, J.-W. Chern, Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem. 56, 6775–6791 (2013)

    Article  CAS  PubMed  Google Scholar 

  155. V. Zuco, M. De Cesare, R. Cincinelli, R. Nannei, C. Pisano, N. Zaffaroni, F. Zunino, Synergistic Antitumor Effects of Novel HDAC Inhibitors and Paclitaxel In Vitro and In Vivo. PLoS ONE 6, e29085 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. A. M. Tsimberidou, P. A. Beer, C. A. Cartwright, C. Haymaker, H. H. Vo, S. Kiany, A. R. L. Cecil, J. Dow, K. Haque, F. A. Silva, L. Coe, H. Berryman, E. A. Bone, G. M. Nogueras-Gonzalez, D. Vining, H. McElwaine-Johnn, and I. I. Wistuba, Preclinical development and First-in-human study of KA2507, a selective and potent inhibitor of histone deacetylase 6, for patients with refractory solid tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 27, 3584–3594 (2021)

  157. H. Song, X. Niu, J. Quan, Y. Li, L. Yuan, J. Wang, C. Ma, E. Ma, Discovery of specific HDAC6 inhibitor with anti-metastatic effects in pancreatic cancer cells through virtual screening and biological evaluation. Bioorganic Chem. 97, 103679 (2020)

    Article  CAS  Google Scholar 

  158. P. Linciano, L. Pinzi, S. Belluti, U. Chianese, R. Benedetti, D. Moi, L. Altucci, S. Franchini, C. Imbriano, C. Sorbi, G. Rastelli, Inhibitors of histone deacetylase 6 based on a novel 3-hydroxy-isoxazole zinc binding group. J. Enzyme Inhib. Med. Chem. 36, 2080–2086 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. N. Relitti, A.P. Saraswati, G. Chemi, M. Brindisi, S. Brogi, D. Herp, K. Schmidtkunz, F. Saccoccia, G. Ruberti, C. Ulivieri, F. Vanni, F. Sarno, L. Altucci, S. Lamponi, M. Jung, S. Gemma, S. Butini, G. Campiani, Synthesis, molecular modeling studies and biological investigation. Eur. J. Med. Chem. 212, 112998 (2021)

    Article  CAS  PubMed  Google Scholar 

  160. T. Liang, J. Xue, Z. Yao, Y. Ye, X. Yang, X. Hou, H. Fang, Design, synthesis and biological evaluation of 3, 4-disubstituted-imidazolidine-2, 5-dione derivatives as HDAC6 selective inhibitors. Eur. J. Med. Chem. 221, 113526 (2021)

    Article  CAS  PubMed  Google Scholar 

  161. Y. Li, J. Quan, H. Song, D. Li, E. Ma, Y. Wang, C. Ma, Novel pyrrolo[2,1-c][1,4]benzodiazepine-3,11-dione (PBD) derivatives as selective HDAC6 inhibitors to suppress tumor metastasis and invasion in vitro and in vivo. Bioorganic Chem. 114, 105081 (2021)

    Article  CAS  Google Scholar 

  162. S. Li, C. Zhao, G. Zhang, Q. Xu, Q. Liu, W. Zhao, C. James Chou, Y. Zhang, Development of selective HDAC6 inhibitors with in vitro and in vivo anti-multiple myeloma activity. Bioorganic Chem. 116, 105278 (2021)

    Article  CAS  Google Scholar 

  163. C. Sharma, Y.J. Oh, B. Park, S. Lee, C.-H. Jeong, S. Lee, J.H. Seo, Y.H. Seo, Development of Thiazolidinedione-Based HDAC6 Inhibitors to Overcome Methamphetamine Addiction. Int. J. Mol. Sci. 20, 6213 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  164. Y. Song, J. Lim, Y.H. Seo, A novel class of anthraquinone-based HDAC6 inhibitors. Eur. J. Med. Chem. 164, 263–272 (2019)

    Article  CAS  PubMed  Google Scholar 

  165. L. Goracci, N. Deschamps, G.M. Randazzo, C. Petit, C. Dos Santos Passos, P.-A. Carrupt, C. Simões-Pires, A. Nurisso, A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors. Sci. Rep. 6, 29086 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. X.-H. Zhang, H.-Q. Kang, Y.-Y. Tao, Y.-H. Li, J.-R. Zhao, Ya-Gao, L.-Y. Ma, H.-M. Liu, Identification of novel 1,3-diaryl-1,2,4-triazole-capped histone deacetylase 6 inhibitors with potential anti-gastric cancer activity. Eur. J. Med. Chem. 218, 113392 (2021)

    Article  CAS  PubMed  Google Scholar 

  167. C. Seidel, M. Schnekenburger, A. Mazumder, M.-H. Teiten, G. Kirsch, M. Dicato, M. Diederich, 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem. Pharmacol. 99, 31–52 (2016)

    Article  CAS  PubMed  Google Scholar 

  168. M. Leonhardt, A. Sellmer, O.H. Krämer, S. Dove, S. Elz, B. Kraus, M. Beyer, S. Mahboobi, Design and biological evaluation of tetrahydro-β-carboline derivatives as highly potent histone deacetylase 6 (HDAC6) inhibitors. Eur. J. Med. Chem. 152, 329–357 (2018)

    Article  CAS  PubMed  Google Scholar 

  169. H.-Y. Lee, A.-C. Tsai, M.-C. Chen, P.-J. Shen, Y.-C. Cheng, C.-C. Kuo, S.-L. Pan, Y.-M. Liu, J.-F. Liu, T.-K. Yeh, J.-C. Wang, C.-Y. Chang, J.-Y. Chang, J.-P. Liou, Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J. Med. Chem. 57, 4009–4022 (2014)

    Article  CAS  PubMed  Google Scholar 

  170. Y.-M. Liu, H.-Y. Lee, M.-J. Lai, S.-L. Pan, H.-L. Huang, F.-C. Kuo, M.-C. Chen, J.-P. Liou, Pyrimidinedione-mediated selective histone deacetylase 6 inhibitors with antitumor activity in colorectal cancer HCT116 cells. Org. Biomol. Chem. 13, 10226–10235 (2015)

    Article  CAS  PubMed  Google Scholar 

  171. M. Kaliszczak, S. Trousil, O. Åberg, M. Perumal, Q.-D. Nguyen, E.O. Aboagye, A novel small molecule hydroxamate preferentially inhibits HDAC6 activity and tumour growth. Br. J. Cancer 108, 342–350 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. K. Nepali, H.-Y. Lee, M.-J. Lai, R. Ojha, T.-Y. Wu, G.-X. Wu, M.-C. Chen, J.-P. Liou, Ring-opened tetrahydro-γ-carbolines display cytotoxicity and selectivity with histone deacetylase isoforms. Eur. J. Med. Chem. 127, 115–127 (2017)

    Article  CAS  PubMed  Google Scholar 

  173. M.-C. Chen, Y.-C. Lin, Y.-H. Liao, J.-P. Liou, C.-H. Chen, MPT0G612, a novel HDAC6 inhibitor, induces apoptosis and suppresses IFN-γ-induced programmed death-ligand 1 in human colorectal carcinoma cells. Cancers 11, 1617 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  174. H.-Y. Lee, K. Nepali, F.-I. Huang, C.-Y. Chang, M.-J. Lai, Y.-H. Li, H.-L. Huang, C.-R. Yang, J.-P. Liou, (N-Hydroxycarbonylbenylamino)quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J. Med. Chem. 61, 905–917 (2018)

    Article  CAS  PubMed  Google Scholar 

  175. H.-W. Ryu, D.-H. Lee, D.-H. Shin, S.H. Kim, S.H. Kwon, Aceroside VIII is a new natural selective HDAC6 inhibitor that synergistically enhances the anticancer activity of HDAC inhibitor in HT29 cells. Planta Med. 81, 222–227 (2015)

    Article  CAS  PubMed  Google Scholar 

  176. C.-W. Yu, P.-Y. Hung, H.-T. Yang, Y.-H. Ho, H.-Y. Lai, Y.-S. Cheng, J.-W. Chern, Quinazolin-2,4-dione-based hydroxamic acids as selective histone deacetylase-6 inhibitors for treatment of non-small cell lung cancer. J. Med. Chem. 62, 857–874 (2019)

    Article  CAS  PubMed  Google Scholar 

  177. S. Noonepalle, S. Shen, J. Ptáček, M.T. Tavares, G. Zhang, J. Stránský, J. Pavlíček, G.M. Ferreira, M. Hadley, G. Pelaez, C. Bařinka, A.P. Kozikowski, A. Villagra, Rational design of suprastat: A novel selective histone deacetylase 6 inhibitor with the ability to potentiate immunotherapy in melanoma models. J. Med. Chem. 63, 10246–10262 (2020)

    Article  CAS  PubMed  Google Scholar 

  178. X. Chen, X. Chen, R.R. Steimbach, T. Wu, H. Li, W. Dan, P. Shi, C. Cao, D. Li, A.K. Miller, Z. Qiu, J. Gao, Y. Zhu, Novel 2, 5-diketopiperazine derivatives as potent selective histone deacetylase 6 inhibitors: Rational design, synthesis and antiproliferative activity. Eur. J. Med. Chem. 187, 111950 (2020)

    Article  CAS  PubMed  Google Scholar 

  179. M. Pérez-Salvia, E. Aldaba, Y. Vara, M. Fabre, C. Ferrer, C. Masdeu, A. Zubia, E.S. Sebastian, D. Otaegui, P. Llinàs-Arias, M. Rosselló-Tortella, M. Berdasco, C. Moutinho, F. Setien, A. Villanueva, E. González-Barca, J. Muncunill, J.-T. Navarro, M.A. Piris, F.P. Cossio, M. Esteller, In vitro and in vivo activity of a new small-molecule inhibitor of HDAC6 in mantle cell lymphoma. Haematologica 103, e537–e540 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  180. J. Sun, W. Wu, X. Tang, F. Zhang, C. Ju, R. Liu, Y. Liang, B. Yu, B. Lv, Y. Guo, D. Zeng, X. Tao, M. Wang, Z. Zhang, C. Zhang, and X.-B. Lv, HDAC6 inhibitor WT161 performs anti-tumor effect on osteosarcoma and synergistically interacts with 5-FU. Biosci. Rep. 41, BSR20203905 (2021)

  181. F. Wang, L. Zheng, Y. Yi, Z. Yang, Q. Qiu, X. Wang, W. Yan, P. Bai, J. Yang, D. Li, H. Pei, T. Niu, H. Ye, C. Nie, Y. Hu, S. Yang, Y. Wei, L. Chen, SKLB-23bb, A HDAC6-Selective Inhibitor, Exhibits Superior and Broad-Spectrum Antitumor Activity via Additionally Targeting Microtubules. Mol. Cancer Ther. 17, 763–775 (2018)

    Article  CAS  PubMed  Google Scholar 

  182. M.K. Ediriweera, N.B. To, Y. Lim, S.K. Cho, Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie 186, 147–156 (2021)

    Article  CAS  PubMed  Google Scholar 

  183. Y.W. Song, Y. Lim, S.K. Cho, 2,4-Di-tert-butylphenol, a potential HDAC6 inhibitor, induces senescence and mitotic catastrophe in human gastric adenocarcinoma AGS cells. Biochem. Biophys. Acta BBA - Mol. Cell Res. 1865, 675–683 (2018)

    Article  CAS  Google Scholar 

  184. J. Dong, N. Zheng, X. Wang, C. Tang, P. Yan, H. Zhou, J. Huang, A novel HDAC6 inhibitor exerts an anti-cancer effect by triggering cell cycle arrest and apoptosis in gastric cancer. Eur. J. Pharmacol. 828, 67–79 (2018)

    Article  CAS  PubMed  Google Scholar 

  185. G. Yan, D. Li, X. Zhong, G. Liu, X. Wang, Y. Lu, F. Qin, Y. Guo, S. Duan, D. Li, Identification of HDAC6 selective inhibitors: pharmacophore based virtual screening, molecular docking and molecular dynamics simulation. J. Biomol. Struct. Dyn. 39, 1928–1939 (2021)

    Article  CAS  PubMed  Google Scholar 

  186. C. Zhao, J. Gao, L. Zhang, L. Su, Y. Luan, Novel HDAC6 selective inhibitors with 4-aminopiperidine-1- carboxamide as the core structure enhanced growth inhibitory activity of bortezomib in MCF-7 cells. Biosci. Trends 13, 91–97 (2019)

    Article  CAS  PubMed  Google Scholar 

  187. M. Dawood, M. Elbadawi, M. Böckers, G. Bringmann, T. Efferth, Molecular docking-based virtual drug screening revealing an oxofluorenyl benzamide and a bromonaphthalene sulfonamido hydroxybenzoic acid as HDAC6 inhibitors with cytotoxicity against leukemia cells. Biomed. Pharmacother. 129, 110454 (2020)

    Article  CAS  PubMed  Google Scholar 

  188. L. Wasim, M. Chopra, Panobinostat induces apoptosis via production of reactive oxygen species and synergizes with topoisomerase inhibitors in cervical cancer cells. Biomed. Pharmacother. 84, 1393–1405 (2016)

    Article  CAS  PubMed  Google Scholar 

  189. L. Wasim, M. Chopra, Synergistic anticancer effect of panobinostat and topoisomerase inhibitors through ROS generation and intrinsic apoptotic pathway induction in cervical cancer cells. Cell. Oncol. Dordr. 41, 201–212 (2018)

    Article  CAS  PubMed  Google Scholar 

  190. L. Hontecillas-Prieto, R. Flores-Campos, A. Silver, E. de Álava, N. Hajji, D.J. García-Domínguez, Synergistic enhancement of cancer therapy using HDAC inhibitors: opportunity for clinical trials. Front. Genet. 11, 578011 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. J. E. Amengual, J. K. Lue, H. Ma, R. Lichtenstein, B. Shah, S. Cremers, S. Jones, and A. Sawas, First-in-class selective HDAC6 inhibitor (ACY-1215) Has a highly favorable safety profile in patients with relapsed and refractory lymphoma. Oncologist 26, 184 (3)

  192. R. Mazroui, S. Di Marco, R.J. Kaufman, I.E. Gallouzi, Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol. Biol. Cell 18, 2603–2618 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. S. Kwon, Y. Zhang, P. Matthias, The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 21, 3381–3394 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. M. Kästle, E. Woschee, T. Grune, Histone deacetylase 6 (HDAC6) plays a crucial role in p38MAPK-dependent induction of heme oxygenase-1 (HO-1) in response to proteasome inhibition. Free Radic. Biol. Med. 53, 2092–2101 (2012)

    Article  PubMed  Google Scholar 

  195. T. Hideshima, J.E. Bradner, J. Wong, D. Chauhan, P. Richardson, S.L. Schreiber, K.C. Anderson, Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl. Acad. Sci. U.S.A. 102, 8567–8572 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. S.W. Lee, S.-K. Yeon, G.W. Kim, D.H. Lee, Y.H. Jeon, J. Yoo, S.Y. Kim, S.H. Kwon, HDAC6-selective inhibitor overcomes bortezomib resistance in multiple myeloma. Int. J. Mol. Sci. 22, 1341 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. X. Sun, Y. Xie, X. Sun, Y. Yao, H. Li, Z. Li, R. Yao, and K. Xu, The selective HDAC6 inhibitor Nexturastat A induces apoptosis, overcomes drug resistance and inhibits tumor growth in multiple myeloma. Biosci. Rep. 39, BSR20181916 (2019)

  198. F.I. Huang, Y.W. Wu, T.Y. Sung, J.P. Liou, M.H. Lin, S.L. Pan, C.R. Yang, MPT0G413, A novel HDAC6-selective inhibitor, and bortezomib synergistically exert anti-tumor activity in multiple myeloma cells. Front. Oncol. 9, 249 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  199. J.E. Amengual, P. Johannet, M. Lombardo, K. Zullo, D. Hoehn, G. Bhagat, L. Scotto, X. Jirau-Serrano, D. Radeski, J. Heinen, H. Jiang, S. Cremers, Y. Zhang, S. Jones, O.A. O’Connor, Dual targeting of protein degradation pathways with the selective HDAC6 inhibitor ACY-1215 and bortezomib is synergistic in lymphoma. Clin. Cancer Res. 21, 4663–4675 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. L. Santo, T. Hideshima, A.L. Kung, J.C. Tseng, D. Tamang, M. Yang, M. Jarpe, J.H. van Duzer, R. Mazitschek, W.C. Ogier, D. Cirstea, S. Rodig, H. Eda, T. Scullen, M. Canavese, J. Bradner, K.C. Anderson, S.S. Jones, N. Raje, Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119, 2579–2589 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. S.T. Nawrocki, J.S. Carew, M.S. Pino, R.A. Highshaw, R.H. Andtbacka, K. Dunner, A. Pal, W.G. Bornmann, P.J. Chiao, P. Huang, H. Xiong, J.L. Abbruzzese, D.J. McConkey, Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res. 66, 3773–3781 (2006)

    Article  CAS  PubMed  Google Scholar 

  202. Y. Mishima, L. Santo, H. Eda, D. Cirstea, N. Nemani, A.J. Yee, E. O’Donnell, M.K. Selig, S.N. Quayle, S. Arastu-Kapur, C. Kirk, L.H. Boise, S.S. Jones, N. Raje, Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. Br. J. Haematol. 169, 423–434 (2015)

    Article  CAS  PubMed  Google Scholar 

  203. R.A. Stanton, K.M. Gernert, J.H. Nettles, R. Aneja, Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev. 31, 443–481 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. E. Mukhtar, V.M. Adhami, H. Mukhtar, Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther. 13, 275–284 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. J. Asthana, S. Kapoor, R. Mohan, and D. Panda, Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells. J. Biol. Chem. 288, 22516–22526–5438 (2013)

  206. Y. Itoh, T. Suzuki, A. Kouketsu, N. Suzuki, S. Maeda, M. Yoshida, H. Nakagawa, N. Miyata, Design, synthesis, structure-selectivity relationship, and effect on human cancer cells of a novel series of histone deacetylase 6-selective inhibitors. J. Med. Chem. 50, 5425–5438 (2007)

    Article  CAS  PubMed  Google Scholar 

  207. J. Yoo, Y.H. Jeon, D.H. Lee, G.W. Kim, S.W. Lee, S.Y. Kim, J. Park, S.H. Kwon, HDAC6-selective inhibitors enhance anticancer effects of paclitaxel in ovarian cancer cells. Oncol. Lett. 21, 201 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. T. Oba, M. Ono, H. Matoba, T. Uehara, Y. Hasegawa, K. Ito, HDAC6 inhibition enhances the anti-tumor effect of eribulin through tubulin acetylation in triple-negative breast cancer cells. Breast Cancer Res. Treat. 186, 37–51 (2021)

    Article  CAS  PubMed  Google Scholar 

  209. H.-J. Tu, Y.-J. Lin, M.-W. Chao, T.-Y. Sung, Y.-W. Wu, Y.-Y. Chen, M.-H. Lin, J.-P. Liou, S.-L. Pan, C.-R. Yang, The anticancer effects of MPT0G211, a novel HDAC6 inhibitor, combined with chemotherapeutic agents in human acute leukemia cells. Clin. Epigenetics 10, 162 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. C. Corno, N. Arrighetti, E. Ciusani, E. Corna, N. Carenini, N. Zaffaroni, L. Gatti, P. Perego, Synergistic interaction of histone deacetylase 6- and MEK-inhibitors in castration-resistant prostate cancer cells. Front. Cell Dev. Biol. 8, 610 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  211. M. Namdar, G. Perez, L. Ngo, P.A. Marks, Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. U.S.A. 107, 20003–20008 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. L. Wang, S. Xiang, K.A. Williams, H. Dong, W. Bai, S.V. Nicosia, S. Khochbin, G. Bepler, X. Zhang, Depletion of HDAC6 enhances cisplatin-induced DNA damage and apoptosis in non-small cell lung cancer cells. PLoS ONE 7, e44265 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. A. Bag, A. Schultz, S. Bhimani, O. Stringfield, W. Dominguez, Q. Mo, L. Cen, D. Adeegbe, Coupling the immunomodulatory properties of the HDAC6 inhibitor ACY241 with Oxaliplatin promotes robust anti-tumor response in non-small cell lung cancer. Oncoimmunology 11, 2042065 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  214. Y. Ruan, L. Wang, Y. Lu, HDAC6 inhibitor, ACY1215 suppress the proliferation and induce apoptosis of gallbladder cancer cells and increased the chemotherapy effect of gemcitabine and oxaliplatin. Drug Dev. Res. 82, 598–604 (2021)

    Article  CAS  PubMed  Google Scholar 

  215. J. Sun, X. Qian, F. Zhang, X. Tang, C. Ju, R. Liu, R. Zhou, Z. Zhang, X.-B. Lv, C. Zhang, G. Huang, HDAC6 inhibitor WT161 induces apoptosis in retinoblastoma cells and synergistically interacts with cisplatin. Transl. Cancer Res. 8, 2759–2768 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. X.-N. Wang, K.-Y. Wang, X.-S. Zhang, C. Yang, X.-Y. Li, 4-Hydroxybenzoic acid (4-HBA) enhances the sensitivity of human breast cancer cells to adriamycin as a specific HDAC6 inhibitor by promoting HIPK2/p53 pathway. Biochem. Biophys. Res. Commun. 504, 812–819 (2018)

    Article  CAS  PubMed  Google Scholar 

  217. H.-R. Won, H.-W. Ryu, D.-H. Shin, S.-K. Yeon, D.H. Lee, S.H. Kwon, A452, an HDAC6-selective inhibitor, synergistically enhances the anticancer activity of chemotherapeutic agents in colorectal cancer cells. Mol. Carcinog. 57, 1383–1395 (2018)

    Article  CAS  PubMed  Google Scholar 

  218. M. Bobrowicz, A. Slusarczyk, J. Domagala, M. Dwojak, D. Ignatova, Y.T. Chang, C. Iselin, N. Miazek-Zapala, K. Marhelava, E. Guenova, M. Winiarska, Selective inhibition of HDAC6 sensitizes cutaneous T-cell lymphoma to PI3K inhibitors. Oncol. Lett. 20, 533–540 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. H. Losson, S.R. Gajulapalli, M. Lernoux, J.-Y. Lee, A. Mazumder, D. Gérard, C. Seidel, H. Hahn, C. Christov, M. Dicato, G. Kirsch, B.W. Han, M. Schnekenburger, M. Diederich, The HDAC6 inhibitor 7b induces BCR-ABL ubiquitination and downregulation and synergizes with imatinib to trigger apoptosis in chronic myeloid leukemia. Pharmacol. Res. 160, 105058 (2020)

    Article  CAS  PubMed  Google Scholar 

  220. Y. Qin, Y. Liang, G. Jiang, Y. Peng, W. Feng, ACY-1215 suppresses the proliferation and induces apoptosis of chronic myeloid leukemia cells via the ROS/PTEN/Akt pathway. Cell Stress Chaperones 27, 383–396 (2022)

    Article  CAS  PubMed  Google Scholar 

  221. D.H. Lee, G.W. Kim, S.H. Kwon, The HDAC6-selective inhibitor is effective against non-Hodgkin lymphoma and synergizes with ibrutinib in follicular lymphoma. Mol. Carcinog. 58, 944–956 (2019)

    Article  CAS  PubMed  Google Scholar 

  222. S.-J. Park, S.H. Joo, N. Lee, W.-J. Jang, J.H. Seo, C.-H. Jeong, ACY-241, an HDAC6 inhibitor, overcomes erlotinib resistance in human pancreatic cancer cells by inducing autophagy. Arch. Pharm. Res. 44, 1062–1075 (2021)

    Article  CAS  PubMed  Google Scholar 

  223. U. Peng, Z. Wang, S. Pei, Y. Ou, P. Hu, W. Liu, J. Song, ACY-1215 accelerates vemurafenib induced cell death of BRAF-mutant melanoma cells via induction of ER stress and inhibition of ERK activation. Oncol. Rep. 37, 1270–1276 (2017)

    Article  CAS  PubMed  Google Scholar 

  224. G. Zhang, Y.H. Gan, Synergistic antitumor effects of the combined treatment with an HDAC6 inhibitor and a COX-2 inhibitor through activation of PTEN. Oncol. Rep. 38, 2657–2666 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. M. Cosenza, M. Civallero, L. Marcheselli, S. Sacchi, S. Pozzi, Ricolinostat, a selective HDAC6 inhibitor, shows anti-lymphoma cell activity alone and in combination with bendamustine. Apoptosis 25, 370–387 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. J.S. Carew, C.M. Espitia, W. Zhao, V. Visconte, F. Anwer, K.R. Kelly, S.T. Nawrocki, Rational cotargeting of HDAC6 and BET proteins yields synergistic antimyeloma activity. Blood Adv. 3, 1318–1329 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. B.J. North, I. Almeciga-Pinto, D. Tamang, M. Yang, S.S. Jones, S.N. Quayle, Enhancement of pomalidomide anti-tumor response with ACY-241, a selective HDAC6 inhibitor. PLoS ONE 12, e0173507 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  228. K. Miyake, N. Takano, H. Kazama, H. Kikuchi, M. Hiramoto, K. Tsukahara, K. Miyazawa, Ricolinostat enhances adavosertib-induced mitotic catastrophe in TP53-mutated head and neck squamous cell carcinoma cells. Int. J. Oncol. 60, 54 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. D.O. Adeegbe, Y. Liu, P.H. Lizotte, Y. Kamihara, A.R. Aref, C. Almonte, R. Dries, Y. Li, S. Liu, X. Wang, T. Warner-Hatten, J. Castrillon, G.C. Yuan, N. Poudel-Neupane, H. Zhang, J.L. Guerriero, S. Han, M.M. Awad, D.A. Barbie, J. Ritz, S.S. Jones, P.S. Hammerman, J. Bradner, S.N. Quayle, K.K. Wong, Synergistic immunostimulatory effects and therapeutic benefit of combined histone deacetylase and bromodomain inhibition in non-small cell lung cancer. Cancer Discov. 7, 852–867 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. H.Y. Cho, S.W. Lee, Y.H. Jeon, D.H. Lee, G.W. Kim, J. Yoo, S.Y. Kim, S.H. Kwon, Combination of ACY-241 and JQ1 synergistically suppresses metastasis of HNSCC via regulation of MMP-2 and MMP-9. Int. J. Mol. Sci. 21, 6873 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  231. Y. Liu, Y. Li, S. Liu, D.O. Adeegbe, C.L. Christensen, M.M. Quinn, R. Dries, S. Han, K. Buczkowski, X. Wang, T. Chen, P. Gao, H. Zhang, F. Li, P.S. Hammerman, J.E. Bradner, S.N. Quayle, K.-K. Wong, NK cells mediate synergistic antitumor effects of combined inhibition of HDAC6 and BET in a SCLC preclinical model. Cancer Res. 78, 3709–3717 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. S. Moufarrij, A. Srivastava, S. Gomez, M. Hadley, E. Palmer, P.T. Austin, S. Chisholm, N. Diab, K. Roche, A. Yu, J. Li, W. Zhu, M. Lopez-Acevedo, A. Villagra, K.B. Chiappinelli, Combining DNMT and HDAC6 inhibitors increases anti-tumor immune signaling and decreases tumor burden in ovarian cancer. Sci. Rep. 10, 3470 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. T. Fukumoto, N. Fatkhutdinov, J.A. Zundell, E.N. Tcyganov, T. Nacarelli, S. Karakashev, S. Wu, Q. Liu, D.I. Gabrilovich, R. Zhang, HDAC6 inhibition synergizes with anti-PD-L1 therapy in ARID1A-inactivated ovarian cancer. Cancer Res. 79, 5482–5489 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. G.W. Kim, J. Yoo, H.-R. Won, S.-K. Yeon, S.W. Lee, D.H. Lee, Y.H. Jeon, S.H. Kwon, HDAC6-selective inhibitor synergistically enhances the anticancer activity of immunomodulatory drugs in IMiDs-resistant multiple myeloma. Leuk. Res. 95, 106398 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Sumeet Kaur would like to thank the University Grants Commission (UGC), New Delhi, India, for awarding her a UGC fellowship. Prerna Rajoria would like to thank the Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India for awarding her a DBT-JRF fellowship (Grant Number: DBT/2021–22/CBR/1593).

Author information

Authors and Affiliations

Authors

Contributions

Madhu Chopra conceptualized the article and critically revised the work. Sumeet Kaur conceptualized the article, performed the literature search, and drafted and critically revised the work. Prerna Rajoria performed the literature search and prepared the figures.

Corresponding author

Correspondence to Madhu Chopra.

Ethics declarations

Ethics approval and consent to participate

No ethical approval and consent to participate was required for this study.

Consent for publication

There is no conflict of interest (either financial or personal). All authors and acknowledged contributors have read and approved the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Rajoria, P. & Chopra, M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol. 45, 779–829 (2022). https://doi.org/10.1007/s13402-022-00704-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00704-6

Keywords

Navigation