Skip to main content

Advertisement

Log in

FBXO32 targets PHPT1 for ubiquitination to regulate the growth of EGFR mutant lung cancer

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Phosphohistidine phosphatase 1 (PHPT1) is an oncogene that has been reported to participate in multiple tumorigenic processes. As yet, however, the role of PHPT1 in lung cancer development remains uncharacterized.

Methods

RNA sequencing assay and 18 pairs of tumor and normal tissues from patients were analyzed to reveal the upregulation of PHPT1 in lung cancer, followed by confirming the biological function in vitro and in vivo. Next, Gene Set Enrichment Analysis, lung cancer samples, apoptosis assay, mass spectrometry experiments and western blotting were used to investigate the molecular mechanism underlying PHPT1 driven progression in epidermal growth factor receptor (EGFR)-mutant lung cancer. Finally, we performed cellular and animal experiments to explore the tumor suppressive function of F-box protein 32 (FBXO32).

Results

We found that PHPT1 is overexpressed in lung cancer patients and correlates with a poor overall survival. In addition, we found that the expression of PHPT1 is elevated in EGFR-mutant lung cancer cells and primary patient samples. Inhibition of PHPT1 expression in EGFR mutant lung cancer cells significantly decreased their proliferation and clonogenicity, and suppressed their in vitro tumor growth. Mechanistic studies revealed that activation of the ERK/MAPK pathway is driven by PHPT1. PHPT1 is required for maintaining drug resistance to erlotinib in EGFR mutant lung cancer cells. We found that FBXO32 acts as an E3 ubiquitin ligase for PHPT1, and that knockdown of FBXO32 leads to PHPT1 accumulation, activation of the ERK/MAPK pathway and promotion of the proliferation, clonogenicity and growth of lung cancer cells.

Conclusions

Our findings indicate that PHPT1 may serve as a biomarker and therapeutic target for acquired erlotinib resistance in lung cancer patients carrying EGFR mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The RNA-sequencing data generated in this research are deposited in Sequence Read Archive (SRA) database. (reviewerlink:https://dataview.ncbi.nlm.nih.gov/object/PRJNA797898?reviewer=sl2j9hkl157fjs3l0avukv9h8q). Survival data supporting this article are from the Kaplan–Meier plotter website and GEO and TCGA datasets, which have been cited.

Code availability

Not applicable.

Abbreviations

PHPT1:

Phosphohistidine phosphatase 1

EGFR:

Epidermal growth factor receptor

FBXO32:

Epidermal growth factor receptor

AAb:

Autoantibody

AKT/mTOR pathway:

Protein kinase B/mammalian target of rapamycin pathway

ERK/MAPK pathway:

Extracellular signal-regulated/mitogen-activated protein kinase pathway

JNK:

C-Jun N-terminal kinase

BMK-1:

Big MAP kinase-1

MAPK:

Mitogen-activated protein kinase

OD value:

Optical density value

BSA:

Bovine serum albumin

TKI:

Tyrosine kinase inhibitor

NSCLC:

Non-small cell lung cancer

References

  1. R.A. Smith, K.S. Andrews, D. Brooks, S.A. Fedewa, D. Manassaram-Baptiste, D. Saslow, O.W. Brawley, R.C. Wender, Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin 68, 297–316 (2018)

    Article  PubMed  Google Scholar 

  2. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71, 209–249 (2021)

    Article  PubMed  Google Scholar 

  3. M. Duruisseaux, M. Esteller, Lung cancer epigenetics: From knowledge to applications. Semin Cancer Biol 51, 116–128 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. L.M. Seijo, N. Peled, D. Ajona, M. Boeri, J.K. Field, G. Sozzi, R. Pio, J.J. Zulueta, A. Spira, P.P. Massion, P.J. Mazzone, L.M. Montuenga, Biomarkers in Lung Cancer Screening: Achievements. Promises, and Challenges, J Thorac Oncol 14, 343–357 (2019)

    Article  CAS  Google Scholar 

  5. P.P. Massion, G.F. Healey, L.J. Peek, L. Fredericks, H.F. Sewell, A. Murray, J.F. Robertson, Autoantibody Signature Enhances the Positive Predictive Power of Computed Tomography and Nodule-Based Risk Models for Detection of Lung Cancer. J Thorac Oncol 12, 578–584 (2017)

    Article  PubMed  Google Scholar 

  6. V. Doseeva, T. Colpitts, G. Gao, J. Woodcock, V. Knezevic, Performance of a multiplexed dual analyte immunoassay for the early detection of non-small cell lung cancer. J Transl Med 13, 55 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. E. Giroux Leprieur, G. Herbretau, C. Dumenil, C. Julie, V. Giraud, S. Labrune, J. Dumoulin, J. Tisserand, J.F. Emile, H. Blons, T. Chinet, Circulating tumor DNA evaluated by Next-Generation Sequencing is predictive of tumor response and prolonged clinical benefit with nivolumab in advanced non-small cell lung cancer. Oncoimmunology 7, e1424675 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. J.D. Merker, G.R. Oxnard, C. Compton, M. Diehn, P. Hurley, A.J. Lazar, N. Lindeman, C.M. Lockwood, A.J. Rai, R.L. Schilsky, A.M. Tsimberidou, P. Vasalos, B.L. Billman, T.K. Oliver, S.S. Bruinooge, D.F. Hayes, N.C. Turner, Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol 36, 1631–1641 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. M. Ehrlich, DNA hypomethylation in cancer cells. Epigenomics 1, 239–259 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. G. Weiss, A. Schlegel, D. Kottwitz, T. Konig, R. Tetzner, Validation of the SHOX2/PTGER4 DNA Methylation Marker Panel for Plasma-Based Discrimination between Patients with Malignant and Nonmalignant Lung Disease. J Thorac Oncol 12, 77–84 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  11. A.M. Aravanis, M. Lee, R.D. Klausner, Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell 168, 571–574 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. A.M. Newman, S.V. Bratman, J. To, J.F. Wynne, N.C. Eclov, L.A. Modlin, C.L. Liu, J.W. Neal, H.A. Wakelee, R.E. Merritt, J.B. Shrager, B.W. Loo Jr., A.A. Alizadeh, M. Diehn, An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20, 548–554 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D. Consonni, M. Pierobon, M.H. Gail, M. Rubagotti, M. Rotunno, A. Goldstein, L. Goldin, J. Lubin, S. Wacholder, N.E. Caporaso, P.A. Bertazzi, M.A. Tucker, A.C. Pesatori, M.T. Landi, Lung cancer prognosis before and after recurrence in a population-based setting. J Natl Cancer Inst 107, djv059 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. S. Klumpp, J. Hermesmeier, D. Selke, R. Baumeister, R. Kellner, J. Krieglstein, Protein histidine phosphatase: a novel enzyme with potency for neuronal signaling. J Cereb Blood Flow Metab 22, 1420–1424 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. P. Ek, G. Pettersson, B. Ek, F. Gong, J.P. Li, O. Zetterqvist, Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase. Eur J Biochem 269, 5016–5023 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. S.X. Han, L.J. Wang, J. Zhao, Y. Zhang, M. Li, X. Zhou, J. Wang, Q. Zhu, 14-kDa Phosphohistidine phosphatase plays an important role in hepatocellular carcinoma cell proliferation. Oncol Lett 4, 658–664 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Srivastava, O. Zhdanova, L. Di, Z. Li, M. Albaqumi, H. Wulff, E.Y. Skolnik, Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1. Proc Natl Acad Sci U S A 105, 14442–14446 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Xu, J. Hao, Z. Zhang, T. Tian, S. Jiang, J. Hao, C. Liu, L. Huang, X. Xiao, D. He, 14-kDa phosphohistidine phosphatase and its role in human lung cancer cell migration and invasion. Lung Cancer 67, 48–56 (2010)

    Article  PubMed  Google Scholar 

  19. A. Xu, Y. Li, W. Zhao, F. Hou, X. Li, L. Sun, W. Chen, A. Yang, S. Wu, B. Zhang, J. Yao, H. Wang, J. Huang, PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-beta1 signaling to PI3Kgamma/AKT/Rac1 pathway. J Mol Med (Berl) 96, 119–133 (2018)

    Article  CAS  Google Scholar 

  20. W. Kolch, Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6, 827–837 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. J.M. Buonato, M.J. Lazzara, ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 74, 309–319 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. A. Bahrami, M. Khazaei, M. Hasanzadeh, S. ShahidSales, M. Joudi Mashhad, M. Farazestanian, H.R. Sadeghnia, M. Rezayi, M. Maftouh, S.M. Hassanian, A. Avan, Therapeutic Potential of Targeting PI3K/AKT Pathway in Treatment of Colorectal Cancer: Rational and Progress. J Cell Biochem 119, 2460–2469 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. B. Gyorffy, P. Surowiak, J. Budczies, A. Lanczky, Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8, e82241 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. U. Degirmenci, M. Wang and J. Hu, Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy, Cells 9, (2020)

  25. F. Liu, X. Yang, M. Geng, M. Huang, Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 8, 552–562 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  26. E.K. Kim, E.J. Choi, Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802, 396–405 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. Y.J. Guo, W.W. Pan, S.B. Liu, Z.F. Shen, Y. Xu, L.L. Hu, ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19, 1997–2007 (2020)

    PubMed  PubMed Central  Google Scholar 

  28. D. Westover, J. Zugazagoitia, B.C. Cho, C.M. Lovly, L. Paz-Ares, Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol 29, i10–i19 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. H. Yasuda, E. Park, C.H. Yun, N.J. Sng, A.R. Lucena-Araujo, W.L. Yeo, M.S. Huberman, D.W. Cohen, S. Nakayama, K. Ishioka, N. Yamaguchi, M. Hanna, G.R. Oxnard, C.S. Lathan, T. Moran, L.V. Sequist, J.E. Chaft, G.J. Riely, M.E. Arcila, R.A. Soo, M. Meyerson, M.J. Eck, S.S. Kobayashi, D.B. Costa, Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med 5, 216ra177 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. A.X. Zhu, O. Rosmorduc, T.R. Evans, P.J. Ross, A. Santoro, F.J. Carrilho, J. Bruix, S. Qin, P.J. Thuluvath, J.M. Llovet, M.A. Leberre, M. Jensen, G. Meinhardt, Y.K. Kang, SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 33, 559–566 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. N. Habel, N. El-Hachem, F. Soysouvanh, H. Hadhiri-Bzioueche, S. Giuliano, S. Nguyen, P. Horak, A.S. Gay, D. Debayle, N. Nottet, G. Beranger, B.B. Paillerets, C. Bertolotto, R. Ballotti, FBXO32 links ubiquitination to epigenetic reprograming of melanoma cells. Cell Death Differ 28, 1837–1848 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 70, 313 (2020)

  33. Q.Y. Hong, G.M. Wu, G.S. Qian, C.P. Hu, J.Y. Zhou, L.A. Chen, W.M. Li, S.Y. Li, K. Wang, Q. Wang, X.J. Zhang, J. Li, X. Gong, C.X. Bai, S. Lung Cancer Group of Chinese Thoracic and C. Chinese Alliance Against Lung, Prevention and management of lung cancer in China, Cancer 121 Suppl 17, 3080–3088 (2015)

  34. R.S. Herbst, D. Morgensztern, C. Boshoff, The biology and management of non-small cell lung cancer. Nature 553, 446–454 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. M. Burotto, V.L. Chiou, J.M. Lee, E.C. Kohn, The MAPK pathway across different malignancies: a new perspective. Cancer 120, 3446–3456 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. N. Bluthgen, S. Legewie, Systems analysis of MAPK signal transduction. Essays Biochem 45, 95–107 (2008)

    Article  PubMed  Google Scholar 

  37. H.Y. Yong, M.S. Koh, A. Moon, The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18, 1893–1905 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. T. Ahmed, A. Zulfiqar, S. Arguelles, M. Rasekhian, S.F. Nabavi, A.S. Silva, S.M. Nabavi, Map kinase signaling as therapeutic target for neurodegeneration. Pharmacol Res 160, 105090 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. B. Kaminska, A. Gozdz, M. Zawadzka, A. Ellert-Miklaszewska, M. Lipko, MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken) 292, 1902–1913 (2009)

    Article  CAS  Google Scholar 

  40. Y.T. Yeung, F. Aziz, A. Guerrero-Castilla, S. Arguelles, Signaling Pathways in Inflammation and Anti-inflammatory Therapies. Curr Pharm Des 24, 1449–1484 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. R. Rosell, E. Carcereny, R. Gervais, A. Vergnenegre, B. Massuti, E. Felip, R. Palmero, R. Garcia-Gomez, C. Pallares, J.M. Sanchez, R. Porta, M. Cobo, P. Garrido, F. Longo, T. Moran, A. Insa, F. De Marinis, R. Corre, I. Bover, A. Illiano, E. Dansin, J. de Castro, M. Milella, N. Reguart, G. Altavilla, U. Jimenez, M. Provencio, M.A. Moreno, J. Terrasa, J. Muñoz-Langa, J. Valdivia, D. Isla, M. Domine, O. Molinier, J. Mazieres, N. Baize, R. Garcia-Campelo, G. Robinet, D. Rodriguez-Abreu, G. Lopez-Vivanco, V. Gebbia, L. Ferrera-Delgado, P. Bombaron, R. Bernabe, A. Bearz, A. Artal, E. Cortesi, C. Rolfo, M. Sanchez-Ronco, A. Drozdowskyj, C. Queralt, I. de Aguirre, J.L. Ramirez, J.J. Sanchez, M.A. Molina, M. Taron, L. Paz-Ares, Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. J.R. Skaar, J.K. Pagan and M. Pagano, SnapShot: F box proteins I, Cell 137, 1160–1160.e1161 (2009)

  43. E.T. Kipreos and M. Pagano, The F-box protein family, Genome Biol 1, REVIEWS3002 (2000)

  44. M.D. Gomes, S.H. Lecker, R.T. Jagoe, A. Navon, A.L. Goldberg, Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98, 14440–14445 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S.C. Bodine, E. Latres, S. Baumhueter, V.K. Lai, L. Nunez, B.A. Clarke, W.T. Poueymirou, F.J. Panaro, E. Na, K. Dharmarajan, Z.Q. Pan, D.M. Valenzuela, T.M. DeChiara, T.N. Stitt, G.D. Yancopoulos, D.J. Glass, Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. J.L. Chou, H.Y. Su, L.Y. Chen, Y.P. Liao, C. Hartman-Frey, Y.H. Lai, H.W. Yang, D.E. Deatherage, C.T. Kuo, Y.W. Huang, P.S. Yan, S.H. Hsiao, C.K. Tai, H.J. Lin, R.V. Davuluri, T.K. Chao, K.P. Nephew, T.H. Huang, H.C. Lai, M.W. Chan, Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer. Lab Invest 90, 414–425 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. H. Zhou, Y. Liu, R. Zhu, F. Ding, Y. Wan, Y. Li, Z. Liu, FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation. Oncogene 36, 3312–3321 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Z. Mei, D. Zhang, B. Hu, J. Wang, X. Shen, W. Xiao, FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity. J Biol Chem 290, 16202–16214 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China for support.

Funding

This work was supported by the National Natural Science Foundation of China (81972740 to H.Y.Z.) and the Zhuhai Science and Technology Project (20181117E030079 to Y.F.L. and 20171009E030079 to M.X.).

Author information

Authors and Affiliations

Authors

Contributions

N.Z., Y.F.L. and W.Z.L. performed the experiments. Y.Q.Q. and N.C. analyzed and interpreted data. S.D.Z. polished the manuscript. M.X. and H.Y.Z. provided ideas and critical comments. M.X. and H.Y.Z. conceived and designed the study and co-wrote the paper with feedback from all authors. All authors approved the final manuscript.

Corresponding authors

Correspondence to Mei Xiao or Hongyu Zhang.

Ethics declarations

Ethics approval and consent to participate

The study was performed in accordance with the Declaration of Helsinki. All human specimen and cell studies were reviewed and approved by the Ethics Committee of The Fifth Affiliated Hospital of Sun Yat-sen University, and informed written consent was obtained from all donors.

Animal experiments

This study is compliant with all relevant ethical regulations regarding animal research. Animal experiments were approved by the Animal Ethical and Welfare Research Committee of the Fifth Affiliated Hospital of Sun Yat-sen University and performed in accordance with established ARRIVE guidelines.

Consent for publication

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Liao, Y., Lv, W. et al. FBXO32 targets PHPT1 for ubiquitination to regulate the growth of EGFR mutant lung cancer. Cell Oncol. 45, 293–307 (2022). https://doi.org/10.1007/s13402-022-00669-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00669-6

Keywords

Navigation