Skip to main content

Advertisement

Log in

Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell’s molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations.

Conclusions

In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Chatterjee, E.J. Rodger, M.R. Eccles, Epigenetic drivers of tumourigenesis and cancer metastasis. Semin. Cancer Biol. 51, 149–159 (2018). https://doi.org/10.1016/j.semcancer.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  2. D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013). https://doi.org/10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D.R. Welch, D.R. Hurst, Defining the hallmarks of metastasis. Cancer Res. 79, 3011–3027 (2019). https://doi.org/10.1158/0008-5472.can-19-0458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Teeuwssen, R. Fodde, Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer. Cancers 11, 1368 (2019). https://doi.org/10.3390/cancers11091368

    Article  CAS  PubMed Central  Google Scholar 

  5. D.A. Lawson, K. Kessenbrock, R.T. Davis, N. Pervolarakis, Z. Werb, Tumour heterogeneity and metastasis at single-cell resolution. Nat. Cell Biol. 20, 1349–1360 (2018). https://doi.org/10.1038/s41556-018-0236-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L.J. Brylka, T. Schinke, Chemokines in physiological and pathological bone remodeling. Front. Immunol. 10, 2182 (2019). https://doi.org/10.3389/fimmu.2019.02182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A.C. Obenauf, J. Massagué, Surviving at a distance: Organ-specific metastasis. Trends Cancer 1, 76–91 (2015). https://doi.org/10.1016/j.trecan.2015.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  8. R.L. Anderson, T. Balasas, J. Callaghan, R.C. Coombes, J. Evans, J.A. Hall, S. Kinrade, D. Jones, P.S. Jones, R. Jones, J.F. Marshall, M.B. Panico, J.A. Shaw, P.S. Steeg, M. Sullivan, W. Tong, A.D. Westwell, J.W.A. Ritchie, Cancer Research UK and Cancer Therapeutics CRC Australia Metastasis Working Group, A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16, 185–204 (2019). https://doi.org/10.1038/s41571-018-0134-8

    Article  PubMed  Google Scholar 

  9. S. Paget, The distribution of secondary growths in cancer of the breast. Lancet. 133, 571–573 (1989). https://doi.org/10.1016/S0140-6736(00)49915-0

  10. A. Gandalovičová, D. Rosel, M. Fernandes, P. Veselý, P. Heneberg, V. Čermák, L. Petruželka, S. Kumar, V. Sanz-Moreno, J. Brábek, Migrastatics-anti-metastatic and anti-invasion drugs: Promises and challenges. Trends Cancer Res. 3, 391–406 (2017). https://doi.org/10.1016/j.trecan.2017.04.008

    Article  CAS  Google Scholar 

  11. A.W. Lambert, D.R. Pattabiraman, R.A. Weinberg, Emerging biological principles of metastasis. Cell 168, 670–691 (2017). https://doi.org/10.1016/j.cell.2016.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Valastyan, R.A. Weinberg, Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011). https://doi.org/10.1016/j.cell.2011.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. I. Rodriguez-Hernandez, G. Cantelli, F. Bruce, V. Sanz-Moreno, Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Res. 5, 783 (2016). https://doi.org/10.12688/f1000research.7909.1

    Article  CAS  Google Scholar 

  14. T. Alkasalias, A. Alexeyenko, K. Hennig, F. Danielsson, R.J. Lebbink, M. Fielden, S.P. Turunen, K. Lehti, V. Kashuba, H.S. Madapura, B. Bozoky, E. Lundberg, M. Balland, H. Guvén, G. Klein, A.K.B. Gad, T. Pavlova, RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo, Proc. Natl. Acad. Sci. U. S. A. 114, E1413–E1421 (2017). https://doi.org/10.1073/pnas.1621161114

  15. M. Morgan-Fisher, U.M. Wewer, A. Yoneda, Regulation of ROCK activity in cancer. J. Histochem. Cytochem. 61, 185–198 (2013). https://doi.org/10.1369/0022155412470834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D.-F. Meng, P. Xie, L.-X. Peng, R. Sun, D.-H. Luo, Q.-Y. Chen, X. Lv, L. Wang, M.-Y. Chen, H.-Q. Mai, L. Guo, X. Guo, L.-S. Zheng, L. Cao, J.-P. Yang, M.-Y. Wang, Y. Mei, Y.-Y. Qiang, Z.-M. Zhang, J.-P. Yun, B.-J. Huang, C.-N. Qian, Erratum to: CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling. J. Exp. Clin. Cancer Res. 36, 33 (2017). https://doi.org/10.1186/s13046-017-0503-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. S. Jansen, R. Gosens, T. Wieland, M. Schmidt, Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharmacol. Ther. 183, 1–21 (2018). https://doi.org/10.1016/j.pharmthera.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  18. C.X. Sun, M.A.O. Magalhães, M. Glogauer, Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J. Cell Biol. 179, 239–245 (2007). https://doi.org/10.1083/jcb.200705122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Schaks, H. Döring, F. Kage, A. Steffen, T. Klünemann, W. Blankenfeldt, T. Stradal, K. Rottner, RhoG and Cdc42 can contribute to Rac-dependent lamellipodia formation through WAVE regulatory complex-binding. Small GTPases 2, 122–132 (2021). https://doi.org/10.1080/21541248.2019.1657755

    Article  Google Scholar 

  20. B. Frugtniet, W.G. Jiang, T.A. Martin, Role of the WASP and WAVE family proteins in breast cancer invasion and metastasis. Breast Cancer 7, 99–109 (2015). https://doi.org/10.2147/BCTT.S59006

    Article  PubMed  PubMed Central  Google Scholar 

  21. K. Kazazian, C. Go, H. Wu, O. Brashavitskaya, R. Xu, J.W. Dennis, A.-C. Gingras, C.J. Swallow, Plk4 promotes cancer invasion and metastasis through Arp2/3 complex regulation of the actin cytoskeleton. Cancer Res. 77, 434–447 (2017). https://doi.org/10.1158/0008-5472.CAN-16-2060

    Article  CAS  PubMed  Google Scholar 

  22. G. Mouneimne, V. DesMarais, M. Sidani, E. Scemes, W. Wang, X. Song, R. Eddy, J. Condeelis, Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr. Biol. 16, 2193–2205 (2006). https://doi.org/10.1016/j.cub.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  23. C.M. Fife, J.A. McCarroll, M. Kavallaris, Movers and shakers: cell cytoskeleton in cancer metastasis. Br. J. Pharmacol. 171, 5507–5523 (2014). https://doi.org/10.1111/bph.12704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. F. Gertler, J. Condeelis, Metastasis: tumor cells becoming MENAcing. Trends Cell Biol. 21, 81–90 (2011). https://doi.org/10.1016/j.tcb.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  25. P. Pandey, S. Rachagani, S. Das, P. Seshacharyulu, Y. Sheinin, N. Naslavsky, Z. Pan, B.L. Smith, H.L. Peters, P. Radhakrishnan, N.R. McKenna, S.S.P. Giridharan, D. Haridas, S. Kaur, M.A. Hollingsworth, R.G. MacDonald, J.L. Meza, S. Caplan, S.K. Batra, J.C. Solheim, Amyloid precursor-like protein 2 (APLP2) affects the actin cytoskeleton and increases pancreatic cancer growth and metastasis. Oncotarget 6, 2064–2075 (2015). https://doi.org/10.18632/oncotarget.2990

    Article  PubMed  Google Scholar 

  26. N.A. Afratis, D. Nikitovic, H.A.B. Multhaupt, A.D. Theocharis, J.R. Couchman, N.K. Karamanos, Syndecans – key regulators of cell signaling and biological functions. FEBS J. 284, 27–41 (2017). https://doi.org/10.1111/febs.13940

    Article  CAS  PubMed  Google Scholar 

  27. S. Gopal, H.A.B. Multhaupt, R. Pocock, J.R. Couchman, Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4. Matrix Biol. 60–61, 57–69 (2017). https://doi.org/10.1016/j.matbio.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  28. Y.-L. Tai, L.-C. Chen, T.-L. Shen, Emerging roles of focal adhesion kinase in cancer. Biomed. Res. Int. 2015, 690690 (2015). https://doi.org/10.1155/2015/690690

  29. R. Peláez, A. Pariente, Á Pérez-Sala, I.M. Larrayoz, Integrins: Moonlighting proteins in invadosome formation. Cancers 11, 615 (2019). https://doi.org/10.3390/cancers11050615

  30. A.M. López-Colomé, I. Lee-Rivera, R. Benavides-Hidalgo, E. López, Paxillin: a crossroad in pathological cell migration. J Hematol Oncol 10, 50 (2017). https://doi.org/10.1186/s13045-017-0418-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. Moreno-Layseca, C.H. Streuli, Signalling pathways linking integrins with cell cycle progression. Matrix Biol. 34, 144–153 (2014). https://doi.org/10.1016/j.matbio.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  32. D.-B. Kong, F. Chen, N. Sima, Focal adhesion kinases crucially regulate TGFβ-induced migration and invasion of bladder cancer cells via Src kinase and E-cadherin. Onco. Targets Ther. 10, 1783–1792 (2017). https://doi.org/10.2147/ott.s122463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J.N. Skhinas, T.R. Cox, The interplay between extracellular matrix remodelling and kinase signalling in cancer progression and metastasis. Cell Adh. Migr. 12, 529–537 (2018). https://doi.org/10.1080/19336918.2017.1405208

    Article  CAS  PubMed  Google Scholar 

  34. G. Gonzalez-Avila, B. Sommer, D.A. Mendoza-Posada, C. Ramos, A.A. Garcia-Hernandez, R. Falfan-Valencia, Corrigendum to “Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer”. Crit. Rev. Oncol. Hematol. 137, 57–83, Crit. Rev. Oncol. Hematol. 138, 172 (2019). https://doi.org/10.1016/j.critrevonc.2019.04.017

  35. Q. Xiao, G. Ge, Lysyl oxidase, extracellular matrix remodeling and cancer metastasis. Cancer Microenviron. 5, 261–273 (2012). https://doi.org/10.1007/s12307-012-0105-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. B. Fogelgren, N. Polgár, K.M. Szauter, Z. Ujfaludi, R. Laczkó, K.S.K. Fong, K. Csiszar, Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic activation. J. Biol. Chem. 280, 24690–24697 (2005). https://doi.org/10.1074/jbc.M412979200

    Article  CAS  PubMed  Google Scholar 

  37. M. Gadiya, G. Chakraborty, Signaling by discoidin domain receptor 1 in cancer metastasis. Cell Adh. Migr. 12, 315–323 (2018). https://doi.org/10.1080/19336918.2018.1520556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C.A.S. Corsa, A. Brenot, W.R. Grither, S. Van Hove, A.J. Loza, K. Zhang, S.M. Ponik, Y. Liu, D.G. DeNardo, K.W. Eliceiri, P.J. Keely, G.D. Longmore, The action of discoidin domain receptor 2 in basal tumor cells and stromal cancer-associated fibroblasts is critical for breast cancer metastasis. Cell Rep. 15, 2510–2523 (2016). https://doi.org/10.1016/j.celrep.2016.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Q. Chen, J. Massagué, Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis, Clin. Cancer Res. 18, 5520–5525 (2012). https://doi.org/10.1158/1078-0432.CCR-11-2904

    Article  CAS  Google Scholar 

  40. R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017). https://doi.org/10.1007/s13402-017-0324-x

    Article  CAS  Google Scholar 

  41. T. Liu, C. Han, S. Wang, P. Fang, Z. Ma, L. Xu, R. Yin, Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 12, 86 (2019). https://doi.org/10.1186/s13045-019-0770-1

  42. J. Kim, J.-S. Bae, Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediat. Inflamm. 2016, 6058147 (2016). https://doi.org/10.1155/2016/6058147

  43. A. Gratchev, TGF-β signalling in tumour associated macrophages. Immunobiology 222, 75–81 (2017). https://doi.org/10.1016/j.imbio.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  44. A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017). https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. I. Jang, K.A. Beningo, Integrins, CAFs and mechanical forces in the progression of cancer. Cancers 11, 721 (2019). https://doi.org/10.3390/cancers11050721

  46. L.V. Ireland, A. Mielgo, Macrophages and fibroblasts, key players in cancer chemoresistance. Front. Cell. Dev. Biol. 6, 131 (2018). https://doi.org/10.3389/fcell.2018.00131

    Article  PubMed  PubMed Central  Google Scholar 

  47. Y. Lin, J. Xu, H. Lan, Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12, 76 (2019). https://doi.org/10.1186/s13045-019-0760-3

  48. C. Bonnans, J. Chou, Z. Werb, Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014). https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. B.D. Robinson, G.L. Sica, Y.-F. Liu, T.E. Rohan, F.B. Gertler, J.S. Condeelis, J.G. Jones, Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin. Cancer Res. 15, 2433–2441 (2009). https://doi.org/10.1158/1078-0432.CCR-08-2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. B. Rizeq, M.I. Malki, The role of CCL21/CCR7 chemokine axis in breast cancer progression. Cancers 12, 1036 (2020). https://doi.org/10.3390/cancers12041036

  51. R. Singh, N. Kapur, H. Mir, N. Singh, J.W. Lillard Jr., S. Singh, CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget 7, 7343–7353 (2016). https://doi.org/10.18632/oncotarget.6944

    Article  PubMed  PubMed Central  Google Scholar 

  52. R.B. Troyanovsky, J. Klingelhöfer, S.M. Troyanovsky, α-Catenin contributes to the strength of E-cadherin-p120 interactions. Mol. Biol. Cell 22, 4247–4255 (2011). https://doi.org/10.1091/mbc.E11-03-0250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. N.A. Gloushankova, S.N. Rubtsova, I.Y. Zhitnyak, Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue Barriers 5, e1356900 (2017). https://doi.org/10.1080/21688370.2017.1356900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. V. Gkretsi, T. Stylianopoulos, Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front. Oncol. 8, 145 (2018). https://doi.org/10.3389/fonc.2018.00145

    Article  PubMed  PubMed Central  Google Scholar 

  55. S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 15, 178–196 (2014). https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. M. Grooteclaes, Q. Deveraux, J. Hildebrand, Q. Zhang, R.H. Goodman, S.M. Frisch, C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc. Natl. Acad. Sci. U. S. A. 100, 4568–4573 (2003). https://doi.org/10.1073/pnas.0830998100

  57. G. Cai, D. Wu, Z. Wang, Z. Xu, K.-B. Wong, C.-F. Ng, F.L. Chan, S. Yu, Collapsin response mediator protein-1 (CRMP1) acts as an invasion and metastasis suppressor of prostate cancer via its suppression of epithelial–mesenchymal transition and remodeling of actin cytoskeleton organization. Oncogene 36, 546–558 (2017). https://doi.org/10.1038/onc.2016.227

    Article  CAS  PubMed  Google Scholar 

  58. W.S. Byun, W.K. Kim, H.J. Han, H.-J. Chung, K. Jang, H.S. Kim, S. Kim, D. Kim, E.S. Bae, S. Park, J. Lee, H.-G. Park, S.K. Lee, Targeting histone methyltransferase DOT1L by a novel psammaplin A analog inhibits growth and metastasis of triple-negative breast cancer. Mol. Ther. Oncolytics 15, 140–152 (2019). https://doi.org/10.1016/j.omto.2019.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M.-H. Cho, J.-H. Park, H.-J. Choi, M.-K. Park, H.-Y. Won, Y.-J. Park, C.H. Lee, S.-H. Oh, Y.-S. Song, H.S. Kim, Y.-H. Oh, J.-Y. Lee, G. Kong, DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat. Commun. 6, 7821 (2015). https://doi.org/10.1038/ncomms8821

    Article  CAS  PubMed  Google Scholar 

  60. J. Park, D.-H. Kim, S.R. Shah, H.-N. Kim, P. Kshitiz, A. Kim, A. Quiñones-Hinojosa, Levchenko, Switch-like enhancement of epithelial-mesenchymal transition by YAP through feedback regulation of WT1 and Rho-family GTPases. Nat. Commun. 10, 2797 (2019). https://doi.org/10.1038/s41467-019-10729-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. P. Potdar, N. Lotey, Role of circulating tumor cells in future diagnosis and therapy of cancer. J. Cancer Metast. Treat. 1, 44 (2015). https://doi.org/10.4103/2394-4722.158803

    Article  CAS  Google Scholar 

  62. C. Agnoletto, L. Minotti, L. Brulle-Soumare, L. Pasquali, M. Galasso, F. Corrà, F. Baldassari, J.-G. Judde, S. Cairo, S. Volinia, Heterogeneous expression of EPCAM in human circulating tumour cells from patient-derived xenografts. Biomark Res. 6, 31 (2018). https://doi.org/10.1186/s40364-018-0145-8

    Article  PubMed  PubMed Central  Google Scholar 

  63. J.C.M. Wan, C. Massie, J. Garcia-Corbacho, F. Mouliere, J.D. Brenton, C. Caldas, S. Pacey, R. Baird, N. Rosenfeld, Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017). https://doi.org/10.1038/nrc.2017.7

    Article  CAS  PubMed  Google Scholar 

  64. X.-L. Lou, J. Sun, S.-Q. Gong, X.-F. Yu, R. Gong, H. Deng, Interaction between circulating cancer cells and platelets: clinical implication. Chin. J. Cancer Res. 27, 450–460 (2015). https://doi.org/10.3978/j.issn.1000-9604.2015.04.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. L. Zhang, L.D. Ridgway, M.D. Wetzel, J. Ngo, W. Yin, D. Kumar, J.C. Goodman, M.D. Groves, D. Marchetti, The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl. Med. 5, 180ra48 (2013). https://doi.org/10.1126/scitranslmed.3005109

    Article  CAS  PubMed  Google Scholar 

  66. H. Wang, N.H. Stoecklein, P.P. Lin, O. Gires, Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 8, 1884–1912 (2017). https://doi.org/10.18632/oncotarget.12242

    Article  PubMed  Google Scholar 

  67. W.-C. Wang, X.-F. Zhang, J. Peng, X.-F. Li, A.-L. Wang, Y.-Q. Bie, L.-H. Shi, M.-B. Lin, X.-F. Zhang, Survival mechanisms and influence factors of circulating tumor cells. Biomed. Res. Int. 2018, 6304701 (2018). https://doi.org/10.1155/2018/6304701

  68. H. Peinado, H. Zhang, I.R. Matei, B. Costa-Silva, A. Hoshino, G. Rodrigues, B. Psaila, R.N. Kaplan, J.F. Bromberg, Y. Kang, M.J. Bissell, T.R. Cox, A.J. Giaccia, J.T. Erler, S. Hiratsuka, C.M. Ghajar, D. Lyden, Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017). https://doi.org/10.1038/nrc.2017.6

    Article  CAS  PubMed  Google Scholar 

  69. C.-M. Zeng, Z. Chen, L. Fu, Frizzled receptors as potential therapeutic targets in human cancers. Int. J. Mol. Sci. 19, 1543 (2018). https://doi.org/10.3390/ijms19051543

    Article  CAS  PubMed Central  Google Scholar 

  70. Y. Zhang, M. Xia, K. Jin, S. Wang, H. Wei, C. Fan, Y. Wu, X. Li, X. Li, G. Li, Z. Zeng, W. Xiong, Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer 17, 45 (2018). https://doi.org/10.1186/s12943-018-0796-y

  71. W. Chen, A.D. Hoffmann, H. Liu, X. Liu, Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis. Oncol. 2, 4 (2018). https://doi.org/10.1038/s41698-018-0047-0

  72. X. Jin, Z. Demere, K. Nair, A. Ali, G.B. Ferraro, T. Natoli, A. Deik, L. Petronio, A.A. Tang, C. Zhu, L. Wang, D. Rosenberg, V. Mangena, J. Roth, K. Chung, R.K. Jain, C.B. Clish, M.G. Vander Heiden, T.R. Golub, A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020). https://doi.org/10.1038/s41586-020-2969-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. P.S. Steeg, Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016). https://doi.org/10.1038/nrc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. V. Sopik, S.A. Narod, The relationship between tumour size, nodal status and distant metastases: on the origins of breast cancer. Breast Cancer Res. Treat. 170, 647–656 (2018). https://doi.org/10.1007/s10549-018-4796-9

    Article  PubMed  PubMed Central  Google Scholar 

  75. M. Kim, S.H. Kizilbash, J.K. Laramy, G. Gampa, K.E. Parrish, J.N. Sarkaria, W.F. Elmquist, Barriers to effective drug treatment for brain metastases: A multifactorial problem in the delivery of precision medicine. Pharm. Res. 35, 177 (2018). https://doi.org/10.1007/s11095-018-2455-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. T.-X. Xie, F.-J. Huang, K.D. Aldape, S.-H. Kang, M. Liu, J.E. Gershenwald, K. Xie, R. Sawaya, S. Huang, Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res. 66, 3188–3196 (2006). https://doi.org/10.1158/0008-5472.CAN-05-2674

    Article  CAS  PubMed  Google Scholar 

  77. M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell. Oncol. 40, 419–441 (2017). https://doi.org/10.1007/s13402-017-0345-5

    Article  CAS  Google Scholar 

  78. W. Jacot, M.-C. Gerlotto-Borne, S. Thezenas, S. Pouderoux, S. Poujol, M. About, G. Romieu, Carmustine and methotrexate in combination after whole brain radiation therapy in breast cancer patients presenting with brain metastases: a retrospective study. BMC Cancer 10, 257 (2010). https://doi.org/10.1186/1471-2407-10-257

  79. M.G. Ewend, S. Brem, M. Gilbert, R. Goodkin, P.L. Penar, M. Varia, S. Cush, L.A. Carey, Treatment of single brain metastasis with resection, intracavity carmustine polymer wafers, and radiation therapy is safe and provides excellent local control. Clin. Cancer Res. 13, 3637–3641 (2007). https://doi.org/10.1158/1078-0432.CCR-06-2095

    Article  CAS  PubMed  Google Scholar 

  80. U. Bottoni, P. Bonaccorsi, V. Devirgiliis, V. Panasiti, R.G. Borroni, G. Trasimeni, R. Clerico, S. Calvieri, Complete remission of brain metastases in three patients with stage IV melanoma treated with BOLD and G-CSF. Jpn. J. Clin. Oncol. 35, 507–513 (2005). https://doi.org/10.1093/jjco/hyi141

    Article  PubMed  Google Scholar 

  81. U. Herrlinger, T. Tzaridis, F. Mack, J.P. Steinbach, U. Schlegel, M. Sabel, P. Hau, R.-D. Kortmann, D. Krex, O. Grauer, R. Goldbrunner, O. Schnell, O. Bähr, M. Uhl, C. Seidel, G. Tabatabai, T. Kowalski, F. Ringel, F. Schmidt-Graf, B. Suchorska, S. Brehmer, A. Weyerbrock, M. Renovanz, L. Bullinger, N. Galldiks, P. Vajkoczy, M. Misch, H. Vatter, M. Stuplich, N. Schäfer, S. Kebir, J. Weller, C. Schaub, W. Stummer, J.-C. Tonn, M. Simon, V.C. Keil, M. Nelles, H. Urbach, M. Coenen, W. Wick, M. Weller, R. Fimmers, M. Schmid, E. Hattingen, T. Pietsch, C. Coch, M. Glas, Neurooncology Working Group of the German Cancer Society, Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet 393, 678–688 (2019). https://doi.org/10.1016/S0140-6736(18)31791-4

    Article  CAS  PubMed  Google Scholar 

  82. L. Abrey, Temozolomide for treating brain metastases. Sem. Oncol. 28, 34–42 (2001). https://doi.org/10.1016/s0093-7754(01)90069-7

    Article  CAS  Google Scholar 

  83. M. Preusser, A.S. Berghoff, D. Schadendorf, N.U. Lin, R. Stupp, Brain metastasis: opportunity for drug development? Curr. Opin. Neurol. 25, 786–794 (2012). https://doi.org/10.1097/WCO.0b013e328359320d

    Article  CAS  PubMed  Google Scholar 

  84. M. Esposito, T. Guise, Y. Kang, The biology of bone metastasis. Cold Spring Harb. Perspect. Med. 8, a031252 (2018). https://doi.org/10.1101/cshperspect.a031252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. L.A. Kingsley, P.G.J. Fournier, J.M. Chirgwin, T.A. Guise, Molecular biology of bone metastasis. Mol. Cancer Ther. 6, 2609–2617 (2007). https://doi.org/10.1158/1535-7163.MCT-07-0234

    Article  CAS  PubMed  Google Scholar 

  86. S. Wang, G.-X. Li, C.-C. Tan, R. He, L.-J. Kang, J.-T. Lu, X.-Q. Li, Q.-S. Wang, P.-F. Liu, Q.-L. Zhai, Y.-M. Feng, FOXF2 reprograms breast cancer cells into bone metastasis seeds. Nat. Commun. 10, 2707 (2019). https://doi.org/10.1038/s41467-019-10379-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. T.M. Dando, L.R. Wiseman, Clodronate: a review of its use in the prevention of bone metastases and the management of skeletal complications associated with bone metastases in patients with breast cancer. Drugs Aging 21, 949–962 (2004). https://doi.org/10.2165/00002512-200421140-00005

    Article  CAS  PubMed  Google Scholar 

  88. Z. Wang, L. Lei, X.-J. Cai, L.Y. Chen, M. Yuan, G. Yang, P. Huang, X. Wang, A preliminary study of pamidronic acid downregulation of angiogenic factors IGF-1/PECAM-1 expression in circulating level in bone metastatic breast cancer patients. Onco. Targets. Ther. 9, 3147–3152 (2016). https://doi.org/10.2147/OTT.S103624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. B. Devitt, S.-A. McLachlan, Use of ibandronate in the prevention of skeletal events in metastatic breast cancer. Ther. Clin. Risk Manag. 4, 453–458 (2008). https://doi.org/10.2147/tcrm.s1966

  90. P.-H. Chiang, H.-C. Wang, Y.-L. Lai, S.-C. Chen, W. Yen-Hwa, C.-K. Kok, Y.-C. Ou, J.-S. Huang, T.-C. Huang, T.-Y. Chao, Zoledronic acid treatment for cancerous bone metastases: a phase IV study in Taiwan. J. Cancer Res. Ther. 9, 653–659 (2013). https://doi.org/10.4103/0973-1482.126471

    Article  CAS  PubMed  Google Scholar 

  91. O. Sartor, Overview of samarium sm 153 lexidronam in the treatment of painful metastatic bone disease. Rev. Urol. 6 (Suppl 10), S3–S12 (2004). https://www.ncbi.nlm.nih.gov/pubmed/16985930. Accessed 23 Apr 2021

  92. W.C. Dougall, I. Holen, E. González Suárez, Targeting RANKL in metastasis. Bonekey Rep. 3, 519 (2014). https://doi.org/10.1038/bonekey.2014.14

    Article  PubMed  PubMed Central  Google Scholar 

  93. Y. Nakai, K. Okamoto, A. Terashima, S. Ehata, J. Nishida, T. Imamura, T. Ono, H. Takayanagi, Efficacy of an orally active small-molecule inhibitor of RANKL in bone metastasis. Bone Res. 7, 1 (2019). https://doi.org/10.1038/s41413-018-0036-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. C. Khanna, X. Wan, S. Bose, R. Cassaday, O. Olomu, A. Mendoza, C. Yeung, R. Gorlick, S.M. Hewitt, L.J. Helman, The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 10, 182–186 (2004). https://doi.org/10.1038/nm982

    Article  CAS  PubMed  Google Scholar 

  95. A. Tamburrini, A. Majorino, S. Duggan, S. Jogai, A. Alzetani, A record-breaking lung metastasis from renal cell carcinoma 37 years after nephrectomy. J. Surg. Case Rep. 2017, rjx205 (2017). https://doi.org/10.1093/jscr/rjx205

  96. L. Jin, B. Han, E. Siegel, Y. Cui, A. Giuliano, X. Cui, Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biol. Ther. 19, 858–868 (2018). https://doi.org/10.1080/15384047.2018.1456599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. M. Yousefi, R. Nosrati, A. Salmaninejad, S. Dehghani, A. Shahryari, A. Saberi, Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell. Oncol. 41, 123–140 (2018). https://doi.org/10.1007/s13402-018-0376-6

    Article  CAS  Google Scholar 

  98. G.P. Gupta, J. Massagué, Cancer metastasis: building a framework. Cell 127, 679–695 (2006). https://doi.org/10.1016/j.cell.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  99. P. Tomasini, J. Egea, M. Souquet-Bressand, L. Greillier, F. Barlesi, Alectinib in the treatment of ALK-positive metastatic non-small cell lung cancer: clinical trial evidence and experience with a focus on brain metastases, Ther. Adv. Respir. Dis. 13, 1753466619831906 (2019). https://doi.org/10.1177/1753466619831906

    Article  CAS  Google Scholar 

  100. M.A. Socinski, R.M. Jotte, F. Cappuzzo, F. Orlandi, D. Stroyakovskiy, N. Nogami, D. Rodríguez-Abreu, D. Moro-Sibilot, C.A. Thomas, F. Barlesi, G. Finley, C. Kelsch, A. Lee, S. Coleman, Y. Deng, Y. Shen, M. Kowanetz, A. Lopez-Chavez, A. Sandler, M. Reck, IMpower150 Study Group, Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018). https://doi.org/10.1056/NEJMoa1716948

    Article  CAS  PubMed  Google Scholar 

  101. A.V. Balar, M.D. Galsky, J.E. Rosenberg, T. Powles, D.P. Petrylak, J. Bellmunt, Y. Loriot, A. Necchi, J. Hoffman-Censits, J.L. Perez-Gracia, N.A. Dawson, M.S. van der Heijden, R. Dreicer, S. Srinivas, M.M. Retz, R.W. Joseph, A. Drakaki, U.N. Vaishampayan, S.S. Sridhar, D.I. Quinn, I. Durán, D.R. Shaffer, B.J. Eigl, P.D. Grivas, E.Y. Yu, S. Li, E.E. Kadel III, Z. Boyd, R. Bourgon, P.S. Hegde, S. Mariathasan, A. Thåström, O.O. Abidoye, G.D. Fine, D.F. Bajorin, IMvigor210 Study Group, Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017). https://doi.org/10.1016/S0140-6736(16)32455-2

    Article  CAS  PubMed  Google Scholar 

  102. R. Saleh, R.Z. Taha, V. Sasidharan Nair, N.M. Alajez, E. Elkord, PD-L1 Blockade by atezolizumab downregulates signaling pathways associated with tumor growth, metastasis, and hypoxia in human triple negative breast cancer. Cancers 11, (2019). https://doi.org/10.3390/cancers11081050

  103. J. Ma, D.J. Waxman, Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol. Cancer Ther. 7, 3670–3684 (2008). https://doi.org/10.1158/1535-7163.mct-08-0715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. M. Vocka, D. Langer, V. Fryba, J. Petrtyl, T. Hanus, M. Kalousova, T. Zima, L. Petruzelka, Novel serum markers HSP60, CHI3L1, and IGFBP-2 in metastatic colorectal cancer. Oncol. Lett. 18, 6284–6292 (2019). https://doi.org/10.3892/ol.2019.10925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O. Golubnitschaja, K.C. Sridhar, Liver metastatic disease: new concepts and biomarker panels to improve individual outcomes. Clin. Exp. Metastasis 33, 743–755 (2016). https://doi.org/10.1007/s10585-016-9816-8

    Article  CAS  PubMed  Google Scholar 

  106. D.G. Power, N.E. Kemeny, The role of floxuridine in metastatic liver disease. Mol. Cancer Ther. 8, 1015–1025 (2009). https://doi.org/10.1158/1535-7163.MCT-08-0709

    Article  CAS  PubMed  Google Scholar 

  107. D. Melisi, R. Garcia-Carbonero, T. Macarulla, D. Pezet, G. Deplanque, M. Fuchs, J. Trojan, H. Oettle, M. Kozloff, A. Cleverly, C. Smith, S.T. Estrem, I. Gueorguieva, M.M.F. Lahn, A. Blunt, K.A. Benhadji, J. Tabernero, Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br. J. Cancer 119, 1208–1214 (2018). https://doi.org/10.1038/s41416-018-0246-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. J. Strauss, C.R. Heery, J. Schlom, R.A. Madan, L. Cao, Z. Kang, E. Lamping, J.L. Marté, R.N. Donahue, I. Grenga, L. Cordes, O. Christensen, L. Mahnke, C. Helwig, J.L. Gulley, Phase I Trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clin. Cancer Res. 24, 1287–1295 (2018). https://doi.org/10.1158/1078-0432.CCR-17-2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. M. Elbaz, M. Ehab, Profile of palbociclib in the treatment of metastatic breast cancer. Breast Cancer Target Ther. 8, 83–91 (2016). https://doi.org/10.2147/bctt.s83146

    Article  CAS  Google Scholar 

  110. K.J. Frankowski, C. Wang, S. Patnaik, F.J. Schoenen, N. Southall, D. Li, Y. Teper, W. Sun, I. Kandela, D. Hu, C. Dextras, Z. Knotts, Y. Bian, J. Norton, S. Titus, M.A. Lewandowska, Y. Wen, K.I. Farley, L.M. Griner, J. Sultan, Z. Meng, M. Zhou, T. Vilimas, A.S. Powers, S. Kozlov, K. Nagashima, H.S. Quadri, M. Fang, C. Long, O. Khanolkar, W. Chen, J. Kang, H. Huang, E. Chow, E. Goldberg, C. Feldman, R. Xi, H.R. Kim, G. Sahagian, S.J. Baserga, A. Mazar, M. Ferrer, W. Zheng, A. Shilatifard, J. Aubé, U. Rudloff, J.J. Marugan, S. Huang, Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis. Sci. Transl. Med. 10, 441 (2018). https://doi.org/10.1126/scitranslmed.aap8307

    Article  CAS  Google Scholar 

  111. L. Malorni, G. Curigliano, A.M. Minisini, S. Cinieri, C.A. Tondini, K. D’Hollander, G. Arpino, A. Bernardo, A. Martignetti, C. Criscitiello, F. Puglisi, M. Pestrin, G. Sanna, E. Moretti, E. Risi, C. Biagioni, A. McCartney, L. Boni, M. Buyse, I. Migliaccio, L. Biganzoli, A. Di Leo, Palbociclib as single agent or in combination with the endocrine therapy received before disease progression for estrogen receptor-positive, HER2-negative metastatic breast cancer: TREnd trial. Ann. Oncol. 29, 1748–1754 (2018). https://doi.org/10.1093/annonc/mdy214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Y. Suhail, M.P. Cain, K. Vanaja, P.A. Kurywchak, A. Levchenko, R. Kalluri, Kshitiz, Systems biology of cancer metastasis. Cell Systems 9, 109–127 (2019). https://doi.org/10.1016/j.cels.2019.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Z.A. Yochum, J. Cades, L. Mazzacurati, N.M. Neumann, S.K. Khetarpal, S. Chatterjee, H. Wang, M.A. Attar, E.H.-B. Huang, S.N. Chatley, K. Nugent, A. Somasundaram, J.A. Engh, A.J. Ewald, Y.-J. Cho, C.M. Rudin, P.T. Tran, T.F. Burns, A first-in-class TWIST1 inhibitor with activity in oncogene-driven lung cancer, Mol. Cancer Res. 15, 1764–1776 (2017). https://doi.org/10.1158/1541-7786.MCR-17-0298

    Article  CAS  Google Scholar 

  114. L.F. Vistain, N. Yamamoto, R. Rathore, P. Cha, T.J. Meade, Targeted inhibition of snail activity in breast cancer cells by using a Co(III)-Ebox conjugate. Chem. Biochem. 16, 2065–2072 (2015). https://doi.org/10.1002/cbic.201500289

    Article  CAS  Google Scholar 

  115. J. Sakata, F. Utsumi, S. Suzuki, K. Niimi, E. Yamamoto, K. Shibata, T. Senga, F. Kikkawa, H. Kajiyama, Inhibition of ZEB1 leads to inversion of metastatic characteristics and restoration of paclitaxel sensitivity of chronic chemoresistant ovarian carcinoma cells. Oncotarget 8, 99482–99494 (2017). https://doi.org/10.18632/oncotarget.20107

    Article  PubMed  PubMed Central  Google Scholar 

  116. Q. Du, X. Zhang, X. Zhang, M. Wei, H. Xu, S. Wang, Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression, Artif. Cells Nanomed. Biotechnol. 47, 1265–1271 (2019). https://doi.org/10.1080/21691401.2019.1594000

    Article  CAS  Google Scholar 

  117. C. Bartholomeusz, X. Xie, M.K. Pitner, K. Kondo, A. Dadbin, J. Lee, H. Saso, P.D. Smith, K.N. Dalby, N.T. Ueno, MEK inhibitor Selumetinib (AZD6244; ARRY-142886) prevents lung metastasis in a triple-negative breast cancer xenograft model. Mol. Cancer Therap. 14, 2773–2781 (2015). https://doi.org/10.1158/1535-7163.mct-15-0243

    Article  CAS  Google Scholar 

  118. L.H. El Touny, A. Vieira, A. Mendoza, C. Khanna, M.J. Hoenerhoff, J.E. Green, Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J. Clin. Invest. 124, 156–168 (2014). https://doi.org/10.1172/JCI70259

    Article  CAS  PubMed  Google Scholar 

  119. J. Chen, T. Deng, X. Li, W. Cai, MiR-193b inhibits the growth and metastasis of renal cell carcinoma by targeting IGF1R, Artif. Cells Nanomed. Biotechnol. 47, 2058–2064 (2019). https://doi.org/10.1080/21691401.2019.1620251

    Article  CAS  Google Scholar 

  120. D. Melisi, S. Ishiyama, G.M. Sclabas, J.B. Fleming, Q. Xia, G. Tortora, J.L. Abbruzzese, P.J. Chiao, LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer Ther. 7, 829–840 (2008). https://doi.org/10.1158/1535-7163.MCT-07-0337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. A. Bandyopadhyay, J.K. Agyin, L. Wang, Y. Tang, X. Lei, B.M. Story, J.E. Cornell, B.H. Pollock, G.R. Mundy, L.-Z. Sun, Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-β type I receptor kinase inhibitor. Cancer Res. 66, 6714–6721 (2006). https://doi.org/10.1158/0008-5472.can-05-3565

    Article  CAS  PubMed  Google Scholar 

  122. R. Ge, V. Rajeev, P. Ray, E. Lattime, S. Rittling, S. Medicherla, A. Protter, A. Murphy, J. Chakravarty, S. Dugar, G. Schreiner, N. Barnard, M. Reiss, Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo, Clin. Cancer Res. 12, 4315–4330 (2006). https://doi.org/10.1158/1078-0432.CCR-06-0162

    Article  CAS  Google Scholar 

  123. S. Biswas, J.S. Nyman, J. Alvarez, A. Chakrabarti, A. Ayres, J. Sterling, J. Edwards, T. Rana, R. Johnson, D.S. Perrien, S. Lonning, Y. Shyr, L.M. Matrisian, G.R. Mundy, Anti-transforming growth factor ß antibody treatment rescues bone loss and prevents breast cancer metastasis to bone. PLoS One 6, e27090 (2011). https://doi.org/10.1371/journal.pone.0027090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. C.-Y. Park, D.-K. Kim, Y.Y. Sheen, EW-7203, a novel small molecule inhibitor of transforming growth factor-β (TGF-β) type I receptor/activin receptor-like kinase-5, blocks TGF-β1-mediated epithelial-to-mesenchymal transition in mammary epithelial cells. Cancer Sci. 102, 1889–1896 (2011). https://doi.org/10.1111/j.1349-7006.2011.02014.x

    Article  CAS  PubMed  Google Scholar 

  125. C.-Y. Park, J.-Y. Son, C.H. Jin, J.-S. Nam, D.-K. Kim, Y.Y. Sheen, EW-7195, a novel inhibitor of ALK5 kinase inhibits EMT and breast cancer metastasis to lung. Eur. J. Cancer 47, 2642–2653 (2011). https://doi.org/10.1016/j.ejca.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  126. F. Zhang, D.R. Braun, G.E. Ananiev, F. Michael Hoffmann, I.-W. Tsai, S.R. Rajski, T.S. Bugni, Biemamides A–E, inhibitors of the TGF-β pathway that block the epithelial to mesenchymal transition. Org. Lett. 20, 5529–5532 (2018). https://doi.org/10.1021/acs.orglett.8b01871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. L. Di, L.-J. Liu, Y.-M. Yan, R. Fu, Y. Li, Y. Xu, Y.-X. Cheng, Z.-Q. Wu, Discovery of a natural small-molecule compound that suppresses tumor EMT, stemness and metastasis by inhibiting TGFβ/BMP signaling in triple-negative breast cancer. J. Exp. Clin. Cancer Res. 38, 134 (2019). https://doi.org/10.1186/s13046-019-1130-2

    Article  PubMed  PubMed Central  Google Scholar 

  128. V. Ramesh, T. Brabletz, P. Ceppi, Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer Res. 6, 942–950 (2020). https://doi.org/10.1016/j.trecan.2020.06.005

    Article  CAS  Google Scholar 

  129. H. Li, Y. Chen, N. Xu, M. Yu, X. Tu, Z. Chen, M. Lin, B. Xie, J. Fu, L. Han, AMD3100 inhibits brain-specific metastasis in lung cancer via suppressing the SDF-1/CXCR4 axis and protecting blood-brain barrier. Am. J. Transl. Res. 9, 5259–5274 (2017). https://www.ncbi.nlm.nih.gov/pubmed/29312481. Accessed 23 Apr 2021

  130. W.-B. Zhu, Z.-F. Zhao, X. Zhou, AMD3100 inhibits epithelial-mesenchymal transition, cell invasion, and metastasis in the liver and the lung through blocking the SDF-1α/CXCR4 signaling pathway in prostate cancer. J. Cell. Physiol. 234, 11746–11759 (2019). https://doi.org/10.1002/jcp.27831

    Article  CAS  PubMed  Google Scholar 

  131. B. Devapatla, A. Sharma, S. Woo, CXCR2 inhibition combined with Sorafenib improved antitumor and antiangiogenic response in preclinical models of ovarian cancer. PLoS One 10, e0139237 (2015). https://doi.org/10.1371/journal.pone.0139237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. X. Yang, J. Di, Y. Zhang, S. Zhang, J. Lu, J. Liu, W. Shi, The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomed. Pharmacother. 66, 221–227 (2012). https://doi.org/10.1016/j.biopha.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  133. H. Ying, S.L. Biroc, W.-W. Li, B. Alicke, J.-A. Xuan, R. Pagila, Y. Ohashi, T. Okada, Y. Kamata, H. Dinter, The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Mol. Cancer Ther. 5, 2158–2164 (2006). https://doi.org/10.1158/1535-7163.MCT-05-0440

    Article  CAS  PubMed  Google Scholar 

  134. T.F. Borin, A.S. Arbab, G.B. Gelaleti, L.C. Ferreira, M.G. Moschetta, B.V. Jardim-Perassi, A.S.M. Iskander, N.R.S. Varma, A. Shankar, V.B. Coimbra, V.A. Fabri, J.G. de Oliveira, D.A.P. de CZuccari, Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res. 60, 3–15 (2016). https://doi.org/10.1111/jpi.12270

    Article  CAS  PubMed  Google Scholar 

  135. S. Liu, R.H. Goldstein, E.M. Scepansky, M. Rosenblatt, Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res. 69, 8742–8751 (2009). https://doi.org/10.1158/0008-5472.CAN-09-1541

    Article  CAS  PubMed  Google Scholar 

  136. E. Koedoot, M. Fokkelman, V.-M. Rogkoti, M. Smid, I. van de Sandt, H. de Bont, C. Pont, J.E. Klip, S. Wink, M.A. Timmermans, E.A.C. Wiemer, P. Stoilov, J.A. Foekens, S.E. Le Dévédec, J.W.M. Martens, B. van de Water, Uncovering the signaling landscape controlling breast cancer cell migration identifies novel metastasis driver genes. Nat. Commun. 10, 2983 (2019). https://doi.org/10.1038/s41467-019-11020-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. R. Kanteti, S.K. Batra, F.E. Lennon, R. Salgia, FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget 7, 31586–31601 (2016). https://doi.org/10.18632/oncotarget.8040

    Article  PubMed  PubMed Central  Google Scholar 

  138. B.Y. Lee, P. Timpson, L.G. Horvath, R.J. Daly, FAK signaling in human cancer as a target for therapeutics. Pharmacol. Therapeut. 146, 132–149 (2015). https://doi.org/10.1016/j.pharmthera.2014.10.001

    Article  CAS  Google Scholar 

  139. A. Winer, M. Janosky, B. Harrison, J. Zhong, D. Moussai, P. Siyah, N. Schatz-Siemers, J. Zeng, S. Adams, P. Mignatti, Inhibition of breast cancer metastasis by presurgical treatment with an oral matrix metalloproteinase inhibitor: A preclinical proof-of-principle study. Mol. Cancer Ther. 15, 2370–2377 (2016). https://doi.org/10.1158/1535-7163.MCT-16-0194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Y. Lyu, Q. Xiao, L. Yin, L. Yang, W. He, Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis, Signal Transduct. Target Ther. 4, 26 (2019). https://doi.org/10.1038/s41392-019-0054-9

    Article  CAS  Google Scholar 

  141. R.D. Bonfil, A. Sabbota, S. Nabha, M.M. Bernardo, Z. Dong, H. Meng, H. Yamamoto, S.R. Chinni, I.T. Lim, M. Chang, L.C. Filetti, S. Mobashery, M.L. Cher, R. Fridman, Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism-based selective gelatinase inhibitor. Int. J. Cancer. 118, 2721–2726 (2006). https://doi.org/10.1002/ijc.21645

    Article  CAS  PubMed  Google Scholar 

  142. W.R. Grither, G.D. Longmore, Inhibition of tumor–microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Proc. Natl. Acad. Sci. U. S. A. 115, E7786–E7794 (2018). https://doi.org/10.1073/pnas.1805020115

  143. X. Hou, H. Du, X. Quan, L. Shi, Q. Zhang, Y. Wu, Y. Liu, J. Xiao, Y. Li, L. Lu, X. Ai, M. Zhan, S. Yuan, L. Sun, Silibinin inhibits NSCLC metastasis by targeting the EGFR/LOX pathway. Front. Pharmacol. 9, 21 (2018). https://doi.org/10.3389/fphar.2018.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. J. Chang, M.C. Lucas, L.E. Leonte, M. Garcia-Montolio, L.B. Singh, A.D. Findlay, M. Deodhar, J.S. Foot, W. Jarolimek, P. Timpson, J.T. Erler, T.R. Cox, Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer. Oncotarget 8, 26066–26078 (2017). https://doi.org/10.18632/oncotarget.15257

    Article  PubMed  PubMed Central  Google Scholar 

  145. A. Bondareva, C.M. Downey, F. Ayres, W. Liu, S.K. Boyd, B. Hallgrimsson, F.R. Jirik, The lysyl oxidase inhibitor, β-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One 4, e5620 (2009). https://doi.org/10.1371/journal.pone.0005620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. T.L.M. Ten Hagen, A.L.B. Seynhaeve, G.A. de Wiel-Ambagtsheer, E.A. de Bruijn, S.T. van Tiel, C. Ruegg, M. Meyring, M. Grell, S.L. Goodman, A.M.M. Eggermont, The αVβ3/αVβ5 integrin inhibitor cilengitide augments tumor response to melphalan isolated limb perfusion in a sarcoma model. Int. J. Cancer. 132, 2694–2704 (2013). https://doi.org/10.1002/ijc.27940

    Article  CAS  PubMed  Google Scholar 

  147. K.B. Kim, V. Prieto, R.W. Joseph, A.H. Diwan, G.E. Gallick, N.E. Papadopoulos, A.Y. Bedikian, L.H. Camacho, P. Hwu, C.S. Ng, W. Wei, M.M. Johnson, S.M. Wittemer, A. Vardeleon, A. Reckeweg, A.D. Colevas, A randomized phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res. 22, 294–301 (2012). https://doi.org/10.1097/CMR.0b013e32835312e4

    Article  CAS  PubMed  Google Scholar 

  148. J. Vansteenkiste, F. Barlesi, C.F. Waller, J. Bennouna, C. Gridelli, E. Goekkurt, D. Verhoeven, A. Szczesna, M. Feurer, J. Milanowski, P. Germonpre, H. Lena, D. Atanackovic, M. Krzakowski, C. Hicking, J. Straub, M. Picard, W. Schuette, K. O’Byrne, Cilengitide combined with cetuximab and platinum-based chemotherapy as first-line treatment in advanced non-small-cell lung cancer (NSCLC) patients: results of an open-label, randomized, controlled phase II study (CERTO). Ann. Oncol. 26, 1734–1740 (2015). https://doi.org/10.1093/annonc/mdv219

    Article  CAS  PubMed  Google Scholar 

  149. C. Scaringi, G. Minniti, P. Caporello, R.M. Enrici, Integrin inhibitor cilengitide for the treatment of glioblastoma: a brief overview of current clinical results. Anticancer Res. 32, 4213–4223 (2012). https://ar.iiarjournals.org/content/32/10/4213.long

  150. A. Gilam, J. Conde, D. Weissglas-Volkov, N. Oliva, E. Friedman, N. Artzi, N. Shomron, Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat. Commun. 7, 12868 (2016). https://doi.org/10.1038/ncomms12868

    Article  PubMed  PubMed Central  Google Scholar 

  151. L.-X. Yan, Y.-H. Liu, J.-W. Xiang, Q.-N. Wu, L.-B. Xu, X.-L. Luo, X.-L. Zhu, C. Liu, F.-P. Xu, D.-L. Luo, P. Mei, J. Xu, K.-P. Zhang, J. Chen, PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int. J. Oncol. 48, 471–484 (2016). https://doi.org/10.3892/ijo.2015.3287

    Article  CAS  PubMed  Google Scholar 

  152. G. Oshima, N. Guo, C. He, M.E. Stack, C. Poon, A. Uppal, S.C. Wightman, A. Parekh, K.B. Skowron, M.C. Posner, W. Lin, N.N. Khodarev, R.R. Weichselbaum, In vivo delivery and therapeutic effects of a microRNA on colorectal liver metastases. Mol. Ther. 25, 1588–1595 (2017). https://doi.org/10.1016/j.ymthe.2017.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. D. Dettori, F. Orso, E. Penna, D. Baruffaldi, S. Brundu, F. Maione, E. Turco, E. Giraudo, D. Taverna, Therapeutic silencing of miR-214 inhibits tumor progression in multiple mouse models. Mol. Ther. 26, 2008–2018 (2018). https://doi.org/10.1016/j.ymthe.2018.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Y. Hara, R. Torii, S. Ueda, E. Kurimoto, E. Ueda, H. Okura, Y. Tatano, H. Yagi, Y. Ohno, T. Tanaka, K. Masuko, T. Masuko, Inhibition of tumor formation and metastasis by a monoclonal antibody against lymphatic vessel endothelial hyaluronan receptor 1. Cancer Sci. 109, 3171–3182 (2018). https://doi.org/10.1111/cas.13755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. W. Leconet, M. Chentouf, S. du Manoir, C. Chevalier, A. Sirvent, I. Aït-Arsa, M. Busson, M. Jarlier, N. Radosevic-Robin, C. Theillet, D. Chalbos, J.-M. Pasquet, A. Pèlegrin, C. Larbouret, B. Robert, Therapeutic activity of anti-AXL antibody against triple-negative breast cancer patient-derived xenografts and metastasis, Clin. Cancer Res. 23, 2806–2816 (2017). https://doi.org/10.1158/1078-0432.CCR-16-1316

    Article  CAS  Google Scholar 

  156. K. Jin, N.B. Pandey, A.S. Popel, Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res. 20, 54 (2018). https://doi.org/10.1186/s13058-018-0981-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. A.-M. Georgoudaki, K.E. Prokopec, V.F. Boura, E. Hellqvist, S. Sohn, J. Östling, R. Dahan, R.A. Harris, M. Rantalainen, D. Klevebring, M. Sund, S.E. Brage, J. Fuxe, C. Rolny, F. Li, J.V. Ravetch, M.C.I. Karlsson, Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15, 2000–2011 (2016). https://doi.org/10.1016/j.celrep.2016.04.084

    Article  CAS  PubMed  Google Scholar 

  158. S. Mochizuki, M. Shimoda, H. Abe, Y. Miyamae, J. Kuramoto, N. Aramaki-Hattori, K. Ishii, H. Ueno, A. Miyakoshi, K. Kojoh, Y. Okada, Selective inhibition of ADAM28 suppresses lung carcinoma cell growth and metastasis. Mol. Cancer Ther. 17, 2427–2438 (2018). https://doi.org/10.1158/1535-7163.MCT-17-1198

    Article  CAS  PubMed  Google Scholar 

  159. Y. Kato, A. Kunita, S. Abe, S. Ogasawara, Y. Fujii, H. Oki, M. Fukayama, Y. Nishioka, M.K. Kaneko, The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity. Oncotarget 6, 36003–36018 (2015). https://doi.org/10.18632/oncotarget.5339

    Article  PubMed  PubMed Central  Google Scholar 

  160. J. Klingelhöfer, B. Grum-Schwensen, M.K. Beck, R.S.P. Knudsen, M. Grigorian, E. Lukanidin, N. Ambartsumian, Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion. Neoplasia 14, 1260–1268 (2012). https://doi.org/10.1593/neo.121554

  161. A. Chiechi, D.L. Waning, K.R. Stayrook, J.T. Buijs, T.A. Guise, K.S. Mohammad, Role of TGF- in breast cancer bone metastases. Adv. Biosci. Biotechnol. 4, 15–30 (2013). https://doi.org/10.4236/abb.2013.410A4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. S. Milette, J.K. Sicklick, A.M. Lowy, P. Brodt, Molecular pathways: targeting the microenvironment of liver metastases. Clin. Cancer Res. 23, 6390–6399 (2017). https://doi.org/10.1158/1078-0432.CCR-15-1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. M. Singh, C. Venugopal, T. Tokar, N. McFarlane, M.K. Subapanditha, M. Qazi, D. Bakhshinyan, P. Vora, N.K. Murty, I. Jurisica, S.K. Singh, Therapeutic targeting of the premetastatic stage in human lung-to-brain metastasis. Cancer Res. 78, 5124–5134 (2018). https://doi.org/10.1158/0008-5472.CAN-18-1022

    Article  CAS  PubMed  Google Scholar 

  164. A. Bettaieb, C. Paul, S. Plenchette, J. Shan, L. Chouchane, F. Ghiringhelli, Precision medicine in breast cancer: reality or utopia? J. Transl. Med. 15, 139 (2017). https://doi.org/10.1186/s12967-017-1239-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Y.-Z. Jiang, Y. Liu, Y. Xiao, X. Hu, L. Jiang, W.-J. Zuo, D. Ma, J. Ding, X. Zhu, J. Zou, C. Verschraegen, D.G. Stover, V. Kaklamani, Z.-H. Wang, Z.-M. Shao, Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: the FUTURE trial. Cell Res. 31, 178–186 (2020). https://doi.org/10.1038/s41422-020-0375-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. J. Verigos, A. Magklara, Revealing the complexity of breast cancer by next generation sequencing. Cancers 7, 2183–2200 (2015). https://doi.org/10.3390/cancers7040885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Q. Tan, J. Cui, J. Huang, Z. Ding, H. Lin, X. Niu, Z. Li, G. Wang, Q. Luo, S. Lu, Genomic alteration during metastasis of lung adenocarcinoma. Cell. Physiol. Biochem. 38, 469–486 (2016). https://doi.org/10.1159/000438644

    Article  CAS  PubMed  Google Scholar 

  168. V. Izzi, M.N. Davis, A. Naba, Pan-cancer analysis of the genomic alterations and mutations of the matrisome. Cancers 12, 2046 (2020). https://doi.org/10.3390/cancers12082046

    Article  CAS  PubMed Central  Google Scholar 

  169. F. Chen, Y. Zhang, S. Varambally, C.J. Creighton, Molecular correlates of metastasis by systematic pan- cancer analysis across The Cancer Genome Atlas, Mol. Cancer Res. 17, 476–487 (2019). https://doi.org/10.1158/1541-7786.MCR-18-0601

    Article  CAS  Google Scholar 

  170. P. Priestley, J. Baber, M.P. Lolkema, N. Steeghs, E. de Bruijn, C. Shale, K. Duyvesteyn, S. Haidari, A. van Hoeck, W. Onstenk, P. Roepman, M. Voda, H.J. Bloemendal, V.C.G. Tjan-Heijnen, C.M.L. van Herpen, M. Labots, P.O. Witteveen, E.F. Smit, S. Sleijfer, E.E. Voest, E. Cuppen, Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019). https://doi.org/10.1038/s41586-019-1689-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. S. Mishra, C.D. Kaddi, M.D. Wang, Pan-cancer analysis for studying cancer stage using protein and gene expression data. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 2440–2443 (2016). https://doi.org/10.1109/EMBC.2016.7591223

  172. K. Pinker, J. Chin, A.N. Melsaether, E.A. Morris, L. Moy, Precision medicine and radiogenomics in breast cancer: New approaches toward diagnosis and treatment. Radiology 287, 732–747 (2018). https://doi.org/10.1148/radiol.2018172171

    Article  PubMed  Google Scholar 

  173. S.A. Eschrich, J. Pramana, H. Zhang, H. Zhao, D. Boulware, J.-H. Lee, G. Bloom, C. Rocha-Lima, S. Kelley, D.P. Calvin, T.J. Yeatman, A.C. Begg, J.F. Torres-Roca, A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 75, 489–496 (2009). https://doi.org/10.1016/j.ijrobp.2009.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. J. Meehan, M. Gray, C. Martínez-Pérez, C. Kay, L.Y. Pang, J.A. Fraser, A.V. Poole, I.H. Kunkler, S.P. Langdon, D. Argyle, A.K. Turnbull, Precision medicine and the role of biomarkers of radiotherapy response in breastcCancer. Front. Oncol. 10, 628 (2020). https://doi.org/10.3389/fonc.2020.00628

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

BK is supported by a doctoral fellowship provided by Pondicherry University, India. The authors acknowledge the Centre for Bioinformatics, Pondicherry University, India for providing the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohane Selvaraj Coumar.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, B., Coumar, M.S. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol. 44, 751–775 (2021). https://doi.org/10.1007/s13402-021-00611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00611-2

Keywords

Navigation