Skip to main content

Advertisement

Log in

Etiology of familial breast cancer with undetected BRCA1 and BRCA2 mutations: clinical implications

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Familial breast cancer accounts for 20–30 % of all breast cancer cases. Mutations in the BRCA1 and BRCA2 genes account for the majority of high risk families with both early onset breast cancer and ovarian cancer. Most of the families with less than six breast cancer cases and no ovarian cancer do not carry BRCA1 or BRCA2 mutations that can be detected using routine sequencing protocols. Here, we aimed to review the etiology of familial breast cancer in cases without BRCA1 and BRCA2 mutations.

Results

After excluding BRCA1 and BRCA2 mutations, factors proposed to contribute to familial breast cancer include: chance clustering of apparently sporadic cases, shared lifestyle, monogenic inheritance, i.e., dominant gene mutations associated with a high risk (TP53, PTEN, STK11), dominant gene mutations associated with a relatively low risk (ATM, BRIP1, RLB2), recessive gene mutations associated with horizontal inheritance patterns (sister-sister), and polygenic inheritance where susceptibility to familial breast cancer is thought to be conferred by a large number of low risk alleles.

Conclusions

Current evidence suggests that in the majority of cases with BRCA1 and BRCA2 negative familial breast cancer the etiology is due to interactions of intermediate or low risk alleles with environmental and lifestyle factors. Thus, a careful selection of patients submitted to genetic testing is needed. Clearly, further research is required to fully elucidate the etiology of non-BRCA familial breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Carroll, C. Cremin, J. Allanson, S.M. Blaine, H. Dorman, C.A. Gibbons et al., Hereditary breast and ovarian cancers. Can. Fam. Physicians 54, 1691–1692 (2008)

    Google Scholar 

  2. S.E. Filippini, A. Vega, Breast cancer genes: beyond BRCA1 and BRCA2. Front. Biosci. (Landmark Ed). 18, 1358–1372 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. M.E. Robson, Treatment of hereditary breast cancer. Semin. Oncol. 34, 389–391 (2007)

    Google Scholar 

  4. T. Ripperger, D. Gadzicki, A. Meindl, B. Schlegelberger, Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur. J. Hum. Genet. 17, 722–731 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. A. Osorio, A. Barroso, B. Martínez, A. Cebrián, J.M. San Román, F. Lobo et al., Molecular analysis of the BRCA1 and BRCA2 genes in 32 breast and/or ovarian cancer Spanish families. Br. J. Cancer 82, 1266–1270 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. R. Sabatier, J. Adélaïde, P. Finetti, A. Ferrari, L. Huiart, H. Sobol et al., BARD1 homozygous deletion, a possible alternative to BRCA1 mutation in basal breast cancer. Genes, Chromosomes Cancer 49, 1143–1151 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. M.A. Didraga, E.H. van Beers, S.A. Joosse, K.I. Brandwijk, R.A. Oldenburg, L.F. Wessels et al., A non-BRCA1/2 hereditary breast cancer sub-group defined by aCGH profiling of genetically related patients. Breast Cancer Res. Treat. 130, 425–436 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. C.I. Szabo, M.C. King, Population genetics of BRCA 1 and BRCA2. Am. J. Hum. Genet. 60, 1013–1020 (1997)

    CAS  PubMed Central  PubMed  Google Scholar 

  9. D. Ford, D.F. Easton, M. Stratton, S. Narod, D. Goldgar, P. Devilee et al., Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676–689 (1998)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. K.E. Malone, J.R. Daling, J.D. Thompson, C.A. O’Brien, L.V. Francisco, E.A. Ostrander, BRCA1 mutations and breast cancer in the general population: analyses in women before age 35 years and in women before age 45 years with first-degree family history. JAMA 279, 922–929 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. K.L. Nathanson, B.L. Weber, “Other” breast cancer susceptibility genes: searching for more holy grail. Hum. Mol. Genet. 10, 715–720 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. C. Turnbull, N. Rahman, Genetic predisposition to breast cancer: past, present, and future. Annu. Rev. Genomics Hum. Genet. 9, 321–345 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. F.P. Li, J.F. Fraumeni Jr., Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann. Intern. Med. 71, 747–752 (1969)

    Article  CAS  PubMed  Google Scholar 

  14. J.M. Birch, Li Fraumeni Syndrome. Eur. J. Cancer 30A, 1935–1941 (1994)

    Article  CAS  PubMed  Google Scholar 

  15. R.A. Eeles, Germline mutations in the TP53 gene. Cancer Surv. 25, 101–124 (1995)

    CAS  PubMed  Google Scholar 

  16. E.I. Palmero, M.I. Achatz, P. Ashton-Prolla, M. Olivier, P. Hainaut, Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr. Opin. Oncol. 22, 64–69 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. S. Tutluer, M.D. Tanriover, G.S. Guven, Cowden syndrome: a major indication for extensive cancer surveillance. Med. Oncol. 29, 1365–1368 (2012)

    Article  PubMed  Google Scholar 

  18. J.A. Hobert, C. Eng, PTEN hamartoma tumor syndrome: an overview. Genet. Med. 11, 687–694 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. G.M. Blumenthal, P.A. Dennis, PTEN hamartoma tumor syndromes. Eur. J. Hum. Genet. 16, 1289–1300 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. S. Gustafson, K.M. Zbuk, C. Scacheri, C. Eng, Cowden syndrome. Semin. Oncol. 34, 428–434 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. R.M. Cisco, J.M. Ford, J.A. Norton, Hereditary diffuse gastric cancer: implications of genetic testing for screening and prophylactic surgery. Cancer 113(7Suppl), 1850–1856 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. K.F. Becker, M.J. Atkinson, U. Reich, I. Becker, H. Nekarda, J.R. Siewert et al., E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 54, 3845–3852 (1994)

    CAS  PubMed  Google Scholar 

  23. G. Keller, H. Vogelsang, I. Becker, J. Hutter, K. Ott, S. Candidus et al., Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation. Am. J. Pathol. 155, 337–342 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. R.C. Fitzgerald, R. Hardwick, D. Huntsman, F. Carneiro, P. Guilford, V. Blair et al., Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J. Med. Genet. 47, 436–444 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. C. Caldas, F. Carneiro, H.T. Lynch, J. Yokota, G.L. Wiesner, S.M. Powell et al., Familial gastric cancer: overview and guidelines for management. J. Med. Genet. 36, 873–880 (1999)

    CAS  PubMed  Google Scholar 

  26. D. Taheri, N. Afshar-Moghadam, P. Mahzoni, A. Eftekhari, S.M. Hashemi, M.H. Emami et al., Cancer problem in Peutz-Jeghers syndrome. Adv. Biomed. Res. (2013). doi:10.4103/2277-9175.109721

    PubMed Central  PubMed  Google Scholar 

  27. L.A. Boardman, S.N. Thibodeau, D.J. Schaid, N.M. Lindor, S.K. McDonnell, L.J. Burgart et al., Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann. Intern. Med. 128, 896–899 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. S. Matsuoka, M. Huang, S.J. Elledge, Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. M. Weischer, S.E. Bojesen, A. Tybjaerg-Hansen, C.K. Axelsson, B.G. Nordestgaard, Increased risk of breast cancer associated with CHEK2*1100delC. J. Clin. Oncol. 25, 57–63 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. C. Cybulski, D. Wokołorczyk, T. Huzarski, T. Byrski, J. Gronwald, B. Górski et al., A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast Cancer Res. Treat. 102, 119–122 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. A. Desrichard, Y. Bidet, N. Uhrhammer, Y.J. Bignon, CHEK2 contribution to hereditary breast cancer in non-BRCA families. Breast Cancer Res. 13, R119 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. S.A. Narod, Testing for CHEK2 in the cancer genetics clinic: ready for prime time? Clin. Genet. 78, 1–7 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. M. Weischer, S.E. Bojesen, C. Ellervik, A. Tybjaerg-Hansen, B.G. Nordestgaard, CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J. Clin. Oncol. 26, 542–548 (2008)

    Article  PubMed  Google Scholar 

  34. Y. Shiloh, ATM: ready, set, go. Cell Cycle 2, 116–117 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. A. Mavrou, G.T. Tsangaris, E. Roma, A. Kolialexi, The ATM gene and ataxia telangiectasia. Anticancer Res. 28, 401–405 (2008)

    CAS  PubMed  Google Scholar 

  36. S. Angèle, J. Hall, The ATM gene and breast cancer: is it really a risk factor? Mutat. Res. 462, 167–178 (2000)

    Article  PubMed  Google Scholar 

  37. J. Hall, The Ataxia-telangiectasia mutated gene and breast cancer: gene expression profiles and sequence variants. Cancer Lett. 227, 105–114 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. A. Renwick, D. Thompson, S. Seal, P. Kelly, T. Chagtai, M. Ahmed et al., ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet. 38, 873–875 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. F. Lalloo, D.G. Evans, Familial breast cancer. Clin Genet. 82, 105–114 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. K.M. Mahdi, M.R. Nassiri, K. Nasiri, Hereditary genes and SNPs associated with breast cancer. Asian Pac. J. Cancer Prev. 14, 3403–3409 (2013)

    Article  PubMed  Google Scholar 

  41. N. Rahman, R.H. Scott, Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Hum. Mol. Genet. 16, R60–R66 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. N. Rahman, S. Seal, D. Thompson, P. Kelly, A. Renwick, A. Elliott et al., PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 39, 165–167 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. M.F. Lavin, ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26, 7749–7758 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. J.H. Lee, T.T. Paull, ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 351–354 (2005)

    Google Scholar 

  45. H.M. Hsu, H.C. Wang, S.T. Chen, G.C. Hsu, C.Y. Shen, J.C. Yu, Breast cancer risk is associated with the genes encoding the DNA double-strand break repair Mre11/Rad50/Nbs1 complex. Cancer Epidemiol. Biomarkers Prev. 16, 2024–2032 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. N. Bogdanova, S. Feshchenko, P. Schürmann, R. Waltes, B. Wieland, P. Hillemanns et al., Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int. J. Cancer 122, 802–806 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. P. van der Groep, E. van der Wall, P.J. van Diest, Pathology of hereditary breast cancer. Cell Oncol. 34, 71–88 (2011)

    Article  Google Scholar 

  48. M.J. Ligtenberg, R.P. Kuiper, T.L. Chan, M. Goossens, K.M. Hebeda, M. Voorendt et al., Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 41, 112–117 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. A.K. Win, N.M. Lindor, I. Winship, K.M. Tucker, D.D. Buchanan, J.P. Young et al., Risks of colorectal and other cancers after endometrial cancer for women with Lynch syndrome. J. Natl. Cancer Inst. 105, 274–279 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. S. Shanley, C. Fung, J. Milliken, J. Leary, R. Barnetson, M. Schnitzler et al., Breast cancer immunohistochemistry can be useful in triage of some HNPCC families. Fam. Cancer 8, 251–255 (2009)

    Article  CAS  PubMed  Google Scholar 

  51. Y.M. Hendriks, A. Wagner, H. Morreau, F. Menko, A. Stormorken, F. Quehenberger et al., Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127, 17–25 (2004)

    Article  CAS  PubMed  Google Scholar 

  52. S.A. Madanikia, A. Bergner, X. Ye, J.O. Blakeley, Increased risk of breast cancer in women with NF1. Am. J. Med. Genet. A 158A, 3056–3060 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  53. X. Wang, A.M. Levin, S.E. Smolinski, F.D. Vigneau, N.K. Levin, M.A. Tainsky, Breast cancer and other neoplasms in women with neurofibromatosis type 1: a retrospective review of cases in the Detroit metropolitan area. Am. J. Med. Genet. A 158A, 3061–3064 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. S. Sharif, A. Moran, S.M. Huson, R. Iddenden, A. Shenton, E. Howard et al., Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J. Med. Genet. 44, 481–484 (2007)

    Article  CAS  PubMed  Google Scholar 

  55. D. Easton, K.A. Pooley, A.M. Dunning, P.D. Pharoah, D. Thompson, D.G. Ballinger et al., Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. R. Gramling, T.L. Lash, K.J. Rothman, H.J. Cabral, R. Silliman, M. Roberts et al., Family history of later-onset breast cancer, breast healthy behavior and invasive breast cancer among postmenopausal women: a cohort study. Breast Cancer Res. 12, R82 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  57. C. Turnbull, S. Ahmed, J. Morrison, D. Pernet, A. Renwick, M. Maranian et al., Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. S. Wacholder, P. Hartge, R. Prentice, M. Garcia-Closas, H.S. Feigelson, W.R. Diver et al., Performance of common genetic variants in breast-cancer risk models. N. Engl. J. Med. 362, 986–993 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. D.F. Conrad, D. Pinto, R. Redon, L. Feuk, O. Gokcumen, Y. Zhang et al., Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. P. Stankiewicz, J.R. Lupski, Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010)

    Article  CAS  PubMed  Google Scholar 

  61. A.C. Krepischi, M.I. Achatz, E.M. Santos, S.S. Costa, B.C. Lisboa, H. Brentani et al., Germline DNA copy number variation in familial and early-onset breast cancer. Breast Cancer Res. 14, R24 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  62. T. Kouzarides, Chromatin modifications and their function. Cell 128, 693–705 (2007)

    Article  CAS  PubMed  Google Scholar 

  63. A.P. Feinberg, R. Ohlsson, S. Henikoff, The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006)

    Article  CAS  PubMed  Google Scholar 

  64. A. de Bustros, B.D. Nelkin, A. Silverman, G. Ehrlich, B. Poiesz, S.B. Baylin, The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc. Natl. Acad. Sci. U. S. A. 85, 5693–5697 (1988)

    Article  PubMed Central  PubMed  Google Scholar 

  65. M.J. Kempers, R.P. Kuiper, C.W. Ockeloen, P.O. Chappuis, P. Hutter, N. Rahner et al., Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol. 12, 49–55 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  66. T. Hansmann, G. Pliushch, M. Leubner, P. Kroll, D. Endt, A. Gehrig et al., Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancerand early-onset sporadic breast cancer. Hum. Mol. Genet. 21, 4669–4679 (2012)

    Article  CAS  PubMed  Google Scholar 

  67. M.P. Hitchins, Inheritance of epigenetic aberrations (constitutional epimutations) in cancer susceptibility. Adv. Genet. 70, 201–243 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. J.M. Flanagan, S. Cocciardi, N. Waddell, C.N. Johnstone, A. Marsh, S. Henderson et al., DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am. J. Hum. Genet. 86, 420–433 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. M. Esteller, M.F. Fraga, M. Guo, J. Garcia-Foncillas, I. Hedenfalk, A.K. Godwin et al., DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum. Mol. Genet. 10, 3001–3007 (2001)

    Article  CAS  PubMed  Google Scholar 

  70. N. Loman, A. Bladström, O. Johannsson, A. Borg, H. Olsson, Cancer incidence in relatives of a population-based set of cases of early-onset breast cancer with a known BRCA1 and BRCA2 mutation status. Breast Cancer Res. 5, R175–R186 (2003)

    Article  PubMed Central  PubMed  Google Scholar 

  71. R. Scully, Role of BRCA gene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Res. 2, 324–330 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. T. Tapia, S.V. Smalley, P. Kohen, A. Muñoz, L.M. Solis, A. Corvalan et al., Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors. Epigenetics 3, 157–163 (2008)

    Article  PubMed  Google Scholar 

  73. E. Honrado, A. Osorio, R.L. Milne, M.F. Paz, L. Melchor, A. Cascón et al., Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families. Mod. Pathol. 20, 1298–1306 (2007)

    Article  CAS  PubMed  Google Scholar 

  74. I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon et al., Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001)

    Article  CAS  PubMed  Google Scholar 

  75. A.M. Dworkin, A.D. Spearman, S.Y. Tseng, K. Sweet, A.E. Toland, Methylation not a frequent “second hit” in tumors with germline BRCA mutations. Fam. Cancer 8, 339–346 (2009)

    Article  CAS  PubMed  Google Scholar 

  76. K. Hemminki, B. Chen, Familial association of prostate cancer with other cancers in the Swedish Family-Cancer Database. Prostate 65, 188–194 (2005)

    Article  PubMed  Google Scholar 

  77. M.P. Zeegers, L.J. Schouten, R.A. Goldbohm, P.A. van den Brandt, A compendium of familial relative risks of cancer among first degree relatives: a population-based study. Int. J. Cancer 123, 1664–1673 (2008)

    Article  CAS  PubMed  Google Scholar 

  78. A. Valeri, G. Fournier, V. Morin, J.F. Morin, E. Drelon, P. Mangin et al., Early onset and familial predisposition to prostate cancer significantly enhance the probability for breast cancer in first degree relatives. Int. J. Cancer 86, 883–887 (2000)

    Article  CAS  PubMed  Google Scholar 

  79. A. Kong, V. Steinthorsdottir, G. Masson, G. Thorleifsson, P. Sulem, S. Besenbacher et al., Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. M. Tuna, M. Smid, J.W. Martens, J.A. Foekens, Prognostic value of acquired uniparental disomy (aUPD) in primary breast cancer. Breast Cancer Res. Treat. 132, 189–196 (2012)

    Article  CAS  PubMed  Google Scholar 

  81. C. Ellberg, G. Jönsson, H. Olsson, Can a phenotype for recessive inheritance in breast cancer be defined? Fam. Cancer 9, 525–530 (2010)

    Article  PubMed  Google Scholar 

  82. U. Güth, D. Müller, D.J. Huang, E. Obermann, H. Müller, Strictly defined familial male breast cancer. Fam. Cancer 10, 73–77 (2011)

    Article  PubMed  Google Scholar 

  83. G. Bostean, C.M. Crespi, W.J. McCarthy, Associations among family history of cancer, cancer screening and lifestyle behaviors: a population-based study. Cancer Causes Control 24, 1491–1503 (2013)

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Yiannakopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiannakopoulou, E. Etiology of familial breast cancer with undetected BRCA1 and BRCA2 mutations: clinical implications. Cell Oncol. 37, 1–8 (2014). https://doi.org/10.1007/s13402-013-0158-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-013-0158-0

Keywords

Navigation