Abstract
Purpose
Small nucleolar RNAs (snoRNAs) direct sequence-specific modifications to ribosomal RNA. We hypothesized that the expression of snoRNAs may be altered in leukemic cells.
Methods
The expression of snoRNAs was analyzed in various leukemic cell lines by massive parallel sequencing (SOLiD). Quantitative real-time PCR (RT-qPCR) was used to validate the expression profiles.
Results
Our results show characteristic differences in the expression patterns of snoRNAs between cell lines representing the main subgroups of leukemia, AML, pre-B-ALL and T-ALL, respectively. In RT-qPCR analyses, several snoRNAs were found to be differentially expressed in T-ALL as compared to pre-B-ALL cell lines.
Conclusions
snoRNAs are differentially expressed in various leukemic cell lines and could, therefore, be potentially useful in the classification of leukemia subgroups.



Similar content being viewed by others
Abbreviations
- ALL:
-
Acute lymphoblastic leukemia
- AML:
-
Acute myeloid leukemia
- APL:
-
Acute promyeloid leukemia
- BLL:
-
Burkitt’s lymphoma/leukemia
- DE:
-
Differentially expressed
- FC:
-
Fold change
- miRNA:
-
Micro-RNA
- ncRNA:
-
Non-protein-coding RNA
- NSCLC:
-
Non-small cell lung cancer
- RT-qPCR:
-
Quantitative real-time PCR
- scaRNA:
-
Cajal body-specific RNA
- siRNA:
-
Small interfering RNA
- snRNA:
-
Small nuclear RNA
- snoRNA:
-
Small nucleolar RNA
- snoRNP:
-
Small nucleolar ribonucleoprotein
References
J.S. Mattick, I.V. Makunin, Non-coding RNA. Hum Mol Genet 15, R17–29 (2006)
R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J Pathol 220, 126–139 (2010)
T. Kiss, Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 109, 145–148 (2002)
B.E. Jady, T. Kiss, A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 20, 541–551 (2001)
X. Darzacq, B.E. Jady, C. Verheggen, A.M. Kiss, E. Bertrand, T. Kiss, Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 21, 2746–2756 (2002)
T. Kiss, E. Fayet-Lebaron, B.E. Jady, Box H/ACA small ribonucleoproteins. Mol Cell. 37, 597–606 (2010)
R.D. Leverette, M.T. Andrews, E.S. Maxwell, Mouse U14 snRNA is a processed intron of the cognate hsc70 heat shock pre-messenger RNA. Cell. 71, 1215–1221 (1992)
P. Fragapane, S. Prislei, A. Michienzi, E. Caffarelli, I. Bozzoni, A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA. EMBO J. 12, 2921–2928 (1993)
T. Kiss, W. Filipowicz, Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene RCC1. EMBO J 12, 2913–2920 (1993)
K.T. Tycowski, M.D. Shu, J.A. Steitz, A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes Dev. 7, 1176–1190 (1993)
M.P. Hoeppner, S. White, D.C. Jeffares, A.M. Poole, Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome Biol Evol. 1, 420–428 (2009)
K.T. Tycowski, M.D. Shu, J.A. Steitz, A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466 (1996)
O. Meyuhas, Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267, 6321–6330 (2000)
J. Cavaille, J.P. Bachellerie, Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 78, 443–456 (1996)
N.J. Watkins, R.D. Leverette, L. Xia, M.T. Andrews, E.S. Maxwell, Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA. 2, 118–133 (1996)
S.L. Ooi, D.A. Samarsky, M.J. Fournier, J.D. Boeke, Intronic snoRNA biosynthesis in saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA. 4, 1096–1110 (1998)
P. Pelczar, W. Filipowicz, The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol Cell Biol. 18, 4509–4518 (1998)
C.M. Smith, J.A. Steitz, Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 18, 6897–6909 (1998)
M.E. Askarian-Amiri, J. Crawford, J.D. French, C.E. Smart, M.A. Smith, M.B. Clark, K. Ru, T.R. Mercer, E.R. Thompson, S.R. Lakhani, A.C. Vargas, I.G. Campbell, M.A. Brown, M.E. Dinger, J.S. Mattick, SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 17, 878–891 (2011)
G. Dieci, M. Preti, B. Montanini, Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 94, 83–88 (2009)
R.J. Taft, E.A. Glazov, T. Lassmann, Y. Hayashizaki, P. Carninci, J.S. Mattick, Small RNAs derived from snoRNAs. RNA. 15, 1233–1240 (2009)
M.S. Scott, M. Ono, From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie. 93, 1987–1992 (2011)
M. Brameier, A. Herwig, R. Reinhardt, L. Walter, J. Gruber, Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 39, 675–686 (2011)
S. Anders, W. Huber, Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010)
T.D. Schmittgen, J. Jiang, Q. Liu, L. Yang, A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004)
H.E. Gee, F.M. Buffa, C. Camps, A. Ramachandran, R. Leek, M. Taylor, M. Patil, H. Sheldon, G. Betts, J. Homer, C. West, J. Ragoussis, A.L. Harris, The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 104, 1168–1177 (2011)
L.H. Qu, Y. Henry, M. Nicoloso, B. Michot, M.C. Azum, M.H. Renalier, M. Caizergues-Ferrer, J.P. Bachellerie, U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res. 23, 2669–2676 (1995)
A. Rebane, A. Metspalu, U82, a novel snoRNA identified from the fifth intron of human and mouse nucleolin gene. Biochim Biophys Acta. 1446, 426–430 (1999)
G.T. Williams, M. Mourtada-Maarabouni, F. Farzaneh, A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans. 39, 482–486 (2011)
W. Valleron, E. Laprevotte, E.F. Gautier, C. Quelen, C. Demur, E. Delabesse, X. Agirre, F. Prósper, T. Kiss, P. Brousset, Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia (2012). doi:10.1038/leu.2012.111
S.C. Nallar, L. Lin, V. Srivastava, P. Gade, E.R. Hofmann, H. Ahmed, S.P. Reddy, D.V. Kalvakolanu, GRIM-1, a novel growth suppressor, inhibits rRNA maturation by suppressing small nucleolar RNAs. PLoS One 6, e24082 (2011)
X.Y. Dong, C. Rodriguez, P. Guo, X. Sun, J.T. Talbot, W. Zhou, J. Petros, Q. Li, R.L. Vessella, A.S. Kibel, V.L. Stevens, E.E. Calle, J.T. Dong, SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 17, 1031–1042 (2008)
X.Y. Dong, P. Guo, J. Boyd, X. Sun, Q. Li, W. Zhou, J.T. Dong, Implication of snoRNA U50 in human breast cancer. J Genet Genomics. 36, 447–454 (2009)
J. Liao, L. Yu, Y. Mei, M. Guarnera, J. Shen, R. Li, Z. Liu, F. Jiang, Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 9, 198 (2010)
Y.P. Mei, J.P. Liao, J.P. Shen, L. Yu, B.L. Liu, L. Liu, R.Y. Li, L. Ji, S.G. Dorsey, Z.R. Jiang, R.L. Katz, J.Y. Wang, F. Jiang, Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 31, 2794–2804 (2012)
M. Mourtada-Maarabouni, M.R. Pickard, V.L. Hedge, F. Farzaneh, G.T. Williams, GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 28, 195–208 (2009)
C. Ender, A. Krek, M.R. Friedlander, M. Beitzinger, L. Weinmann, W. Chen, S. Pfeffer, N. Rajewsky, G. Meister, A human snoRNA with microRNA-like functions. Mol Cell. 32, 519–528 (2008)
M. Ono, M.S. Scott, K. Yamada, F. Avolio, G.J. Barton, A.I. Lamond, Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 39, 3879–3891 (2011)
V. Havelange, R. Garzon, MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol. 85, 935–942 (2010)
S. Bhagavathi, M. Czader, MicroRNAs in benign and malignant hematopoiesis. Arch Pathol Lab Med. 134, 1276–1281 (2010)
P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O’Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B. Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513–10518 (2008)
X. Chen, Y. Ba, L. Ma, X. Cai, Y. Yin, K. Wang, J. Guo, Y. Zhang, J. Chen, X. Guo, Q. Li, X. Li, W. Wang, Y. Zhang, J. Wang, X. Jiang, Y. Xiang, C. Xu, P. Zheng, J. Zhang, R. Li, H. Zhang, X. Shang, T. Gong, G. Ning, J. Wang, K. Zen, J. Zhang, C.Y. Zhang, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008)
E.K. Ng, W.W. Chong, H. Jin, E.K. Lam, V.Y. Shin, J. Yu, T.C. Poon, S.S. Ng, J.J. Sung, Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58, 1375–1381 (2009)
M.A. Cortez, G.A. Calin, MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther. 9, 703–711 (2009)
M.I. Aslam, K. Taylor, J.H. Pringle, J.S. Jameson, MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg. 96, 702–710 (2009)
M. Tsujiura, D. Ichikawa, S. Komatsu, A. Shiozaki, H. Takeshita, T. Kosuga, H. Konishi, R. Morimura, K. Deguchi, H. Fujiwara, K. Okamoto, E. Otsuji, Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 102, 1174–1179 (2010)
Z. Hu, X. Chen, Y. Zhao, T. Tian, G. Jin, Y. Shu, Y. Chen, L. Xu, K. Zen, C. Zhang, H. Shen, Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 28, 1721–1726 (2010)
Acknowledgements
We thank Mr. Jorma Kulmala for technical assistance. This work was supported by the Academy of Finland Research Council for Health (funding decision number 115260), the Foundation for Paediatric Research in Finland, the Finnish Medical Foundation, the Competitive Research Funding of Tampere University Hospital (grants 9J062, 9K073 and 9M052), the Nona and Kullervo Väre Foundation and the Päivikki and Sakari Sohlberg Foundation. The funding sources had no involvement in the study.
Conflict of interest
The authors declare no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Authors’ contributions
Kaisa J. Teittinen and Olli Lohi provided conception of the study, designed the study and drafted the manuscript. Kaisa J. Teittinen, Asta Laiho, Annemari Uusimäki and Juha-Pekka Pursiheimo performed the experiments. Kaisa J. Teittinen, Asta Laiho, Attila Gyenesei and Olli Lohi analyzed and interpreted the data. Asta Laiho, Annemari Uusimäki, Juha-Pekka Pursiheimo and Attila Gyenesei revised the manuscript and all authors approved the final version of the submitted manuscript.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOC 837 kb)
Rights and permissions
About this article
Cite this article
Teittinen, K.J., Laiho, A., Uusimäki, A. et al. Expression of small nucleolar RNAs in leukemic cells. Cell Oncol. 36, 55–63 (2013). https://doi.org/10.1007/s13402-012-0113-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13402-012-0113-5