Skip to main content
Log in

The GNAS1 T393C single nucleotide polymorphism predicts the natural postoperative course of complete resected esophageal cancer

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Genetic variations in cancer patients may serve as important prognostic indicators of clinical outcome. The GNAS1 T393C single nucleotide polymorphism (SNP) diversely correlates with the clinical outcome in cancer. The aim of this study was to evaluate the potential prognostic value of T393C-SNP in complete resected only surgically treated esophageal cancer (EC).

Methods

Genomic DNA was extracted from peripheral blood leucocytes of 190 patients who underwent only complete surgical resection for EC. T393C-SNP was correlated with clinic-pathological parameters, tumor cell dissemination in bone marrow (DTC) and clinical outcome.

Results

T-allele carriers had more advanced disease due to presence of lymph node metastasis (P < 0.0001) and DTC (P = 0.01) and higher recurrence rate (P = 0.01) compared to CC genotype. The disease-free (P < 0.001) and overall survival (P < 0.001) was better in CC compared to TT and TC patients. In the multivariate Cox regression disease-stage adjusted analysis the T393C-SNP was identified as a strong independent prognostic factor for recurrence (hazard ratio 1.8, P = 0.01) and survival (hazard ratio 2.5, P < 0.001) in EC patients.

Conclusion

Determination of T393C-SNP preoperatively will allow allocation of EC patients into different risk profiles which may help to stratify patients eligible for neoadjuvant and or adjuvant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. R.A. Malthaner, R.K. Wong, R.B. Rumble, L. Zuraw, Neoadjuvant or adjuvant therapy for resectable esophageal cancer: a clinical practice guideline. BMC Cancer 4, 67 (2004)

    Article  PubMed  Google Scholar 

  2. R.A. Malthaner, R.K. Wong, R.B. Rumble, L. Zuraw, Neoadjuvant or adjuvant therapy for resectable esophageal cancer: a systematic review and meta-analysis. BMC Med. 2, 35 (2004)

    Article  PubMed  Google Scholar 

  3. C.G. Peyre, J.A. Hagen, S.R. DeMeester, J.J. Van Lanschot, A. Holscher et al., Predicting systemic disease in patients with esophageal cancer after esophagectomy: a multinational study on the significance of the number of involved lymph nodes. Ann. Surg. 248, 979–985 (2008)

    Article  PubMed  Google Scholar 

  4. E. Adjadj, M. Schlumberger, F. de Vathaire, Germ-line DNA polymorphisms and susceptibility to differentiated thyroid cancer. Lancet Oncol. 10, 181–190 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. D.F. Easton, K.A. Pooley, A.M. Dunning, P.D. Pharoah, D. Thompson et al., Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. K.W. Hunter, Host genetics and tumour metastasis. Br. J. Cancer 90, 752–755 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. M.R. Koelle, Heterotrimeric G protein signaling: getting inside the cell. Cell 126, 25–27 (2006)

    Article  PubMed  CAS  Google Scholar 

  8. L.S. Weinstein, S. Yu, D.R. Warner, J. Liu, Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr. Rev. 22, 675–705 (2001)

    Article  PubMed  CAS  Google Scholar 

  9. J. Lyons, C.A. Landis, G. Harsh, L. Vallar, K. Grunewald et al., Two G protein oncogenes in human endocrine tumors. Science 249, 655–659 (1990)

    Article  PubMed  CAS  Google Scholar 

  10. A. Lania, G. Mantovani, A. Spada, Genetics of pituitary tumors: focus on G-protein mutations. Exp. Biol. Med. (Maywood) 228, 1004–1017 (2003)

    CAS  Google Scholar 

  11. Y. Daaka, L.M. Luttrell, R.J. Lefkowitz, Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997)

    Article  PubMed  CAS  Google Scholar 

  12. X. Yang, F.Y. Lee Sr., G.S. Wand, Increased expression of Gs(alpha) enhances activation of the adenylyl cyclase signal transduction cascade. Mol. Endocrinol. 11, 1053–1061 (1997)

    Article  PubMed  CAS  Google Scholar 

  13. U.H. Frey, H. Alakus, J. Wohlschlaeger, K.J. Schmitz, G. Winde et al., GNAS1 T393C polymorphism and survival in patients with sporadic colorectal cancer. Clin. Cancer Res. 11, 5071–5077 (2005)

    Article  PubMed  CAS  Google Scholar 

  14. U.H. Frey, A. Eisenhardt, G. Lummen, H. Rubben, K.H. Jockel et al., The T393C polymorphism of the G alpha s gene (GNAS1) is a novel prognostic marker in bladder cancer. Cancer Epidemiol. Biomark. Prev. 14, 871–877 (2005)

    Article  CAS  Google Scholar 

  15. K. Pantel, C. Alix-Panabieres, S. Riethdorf, Cancer micrometastases. Nat Rev Clin Oncol 6, 339–351 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. K. Pantel, R.H. Brakenhoff, B. Brandt, Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. E. Borgen, B. Naume, J.M. Nesland, G. Kvalheim, K. Beiske et al., Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. Establishment of objective criteria for the evaluation of immunostained cells. Cytotherapy 1, 377–388 (1999)

    Article  PubMed  CAS  Google Scholar 

  18. T. Fehm, S. Braun, V. Muller, W. Janni, G. Gebauer et al., A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107, 885–892 (2006)

    Article  PubMed  Google Scholar 

  19. U.H. Frey, G. Lummen, T. Jager, K.H. Jockel, K.W. Schmid et al., The GNAS1 T393C polymorphism predicts survival in patients with clear cell renal cell carcinoma. Clin. Cancer Res. 12, 759–763 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. U.H. Frey, H. Nuckel, L. Sellmann, D. Siemer, R. Kuppers et al., The GNAS1 T393C polymorphism is associated with disease progression and survival in chronic lymphocytic leukemia. Clin. Cancer Res. 12, 5686–5692 (2006)

    Article  PubMed  CAS  Google Scholar 

  21. G.F. Lehnerdt, P. Franz, S. Winterhoff, A. Bankfalvi, S. Grehl et al., The GNAS1 T393C polymorphism predicts survival in patients with advanced squamous cell carcinoma of the larynx. Laryngoscope 118, 2172–2176 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. G.F. Lehnerdt, P. Franz, A. Zaqoul, K.J. Schmitz, S. Grehl et al., Overall and relapse-free survival in oropharyngeal and hypopharyngeal squamous cell carcinoma are associated with genotypes of T393C polymorphism of the GNAS1 gene. Clin. Cancer Res. 14, 1753–1758 (2008)

    Article  PubMed  CAS  Google Scholar 

  23. L.S. Weinstein, J. Liu, A. Sakamoto, T. Xie, M. Chen, Minireview: GNAS: normal and abnormal functions. Endocrinology 145, 5459–5464 (2004)

    Article  PubMed  CAS  Google Scholar 

  24. F. Capon, M.H. Allen, M. Ameen, A.D. Burden, D. Tillman et al., A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum. Mol. Genet. 13, 2361–2368 (2004)

    Article  PubMed  CAS  Google Scholar 

  25. J. Duan, M.S. Wainwright, J.M. Comeron, N. Saitou, A.R. Sanders et al., Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12, 205–216 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. M.J. Tierney, R.L. Medcalf, Plasminogen activator inhibitor type 2 contains mRNA instability elements within exon 4 of the coding region. Sequence homology to coding region instability determinants in other mRNAs. J. Biol. Chem. 276, 13675–13684 (2001)

    PubMed  CAS  Google Scholar 

  27. F. Otterbach, R. Callies, U.H. Frey, K.J. Schmitz, C. Wreczycki et al., The T393C polymorphism in the gene GNAS1 of G protein is associated with survival of patients with invasive breast carcinoma. Breast Cancer Res. Treat. 105, 311–317 (2007)

    Article  PubMed  CAS  Google Scholar 

  28. K.J. Schmitz, H. Lang, U.H. Frey, G.C. Sotiropoulos, J. Wohlschlaeger et al., GNAS1 T393C polymorphism is associated with clinical course in patients with intrahepatic cholangiocarcinoma. Neoplasia 9, 159–165 (2007)

    Article  PubMed  CAS  Google Scholar 

  29. H. Alakus, U. Warnecke-Eberz, E. Bollschweiler, S.P. Monig, D. Vallbohmer et al., GNAS1 T393C polymorphism is associated with histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Pharmacogenomics J. 9, 202–207 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. E.J. Neer, Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249–257 (1995)

    Article  PubMed  CAS  Google Scholar 

  31. L.S. Weinstein, T. Xie, Q.H. Zhang, M. Chen, Studies of the regulation and function of the Gs alpha gene Gnas using gene targeting technology. Pharmacol. Ther. 115, 271–291 (2007)

    Article  PubMed  CAS  Google Scholar 

  32. A. Harry, Y. Chen, R. Magnusson, R. Iyengar, G. Weng, Differential regulation of adenylyl cyclases by Galphas. J. Biol. Chem. 272, 19017–19021 (1997)

    Article  PubMed  CAS  Google Scholar 

  33. M. Keiper, M.B. Stope, D. Szatkowski, A. Bohm, K. Tysack et al., Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J. Biol. Chem. 279, 46497–46508 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. S. Kiermayer, R.M. Biondi, J. Imig, G. Plotz, J. Haupenthal et al., Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol. Biol. Cell 16, 5639–5648 (2005)

    Article  PubMed  CAS  Google Scholar 

  35. C. Peyssonnaux, A. Eychene, The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell 93, 53–62 (2001)

    Article  PubMed  CAS  Google Scholar 

  36. B.C. Visser, A.P. Venook, M.G. Patti, Adjuvant and neoadjuvant therapy for esophageal cancer: a critical reappraisal. Surg. Oncol. 12, 1–7 (2003)

    Article  PubMed  Google Scholar 

  37. J. Zhang, H.Q. Chen, Y.W. Zhang, J.Q. Xiang, Adjuvant chemotherapy in oesophageal cancer: a meta-analysis and experience from the Shanghai Cancer Hospital. J. Int. Med. Res. 36, 875–882 (2008)

    PubMed  CAS  Google Scholar 

  38. A. DeMichele, R. Aplenc, J. Botbyl, T. Colligan, L. Wray et al., Drug-metabolizing enzyme polymorphisms predict clinical outcome in a node-positive breast cancer cohort. J. Clin. Oncol. 23, 5552–5559 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. F. Innocenti, L. Iyer, M.J. Ratain, Pharmacogenetics: a tool for individualizing antineoplastic therapy. Clin. Pharmacokinet. 39, 315–325 (2000)

    Article  PubMed  CAS  Google Scholar 

  40. F. Innocenti, S.D. Undevia, L. Iyer, P.X. Chen, S. Das et al., Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. 22, 1382–1388 (2004)

    Article  PubMed  CAS  Google Scholar 

  41. P.E. Huijts, M.P. Vreeswijk, K.H. Kroeze-Jansema, C.E. Jacobi, C. Seynaeve et al., Clinical correlates of low-risk variants in FGFR2, TNRC9, MAP3K1, LSP1 and 8q24 in a Dutch cohort of incident breast cancer cases. Breast Cancer Res. 9, R78 (2007)

    Article  PubMed  Google Scholar 

  42. P. Kraft, P. Pharoah, S.J. Chanock, D. Albanes, L.N. Kolonel et al., Genetic variation in the HSD17B1 gene and risk of prostate cancer. PLoS Genet. 1, e68 (2005)

    Article  PubMed  Google Scholar 

  43. U.H. Frey, A. Fritz, S. Rotterdam, K.W. Schmid, A. Potthoff et al., GNAS1 T393C polymorphism and disease progression in patients with malignant melanoma. Eur. J. Med. Res. 15, 422–427 (2010)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Kumar Vashist.

Additional information

Yogesh K. Vashist and Asad Kutup have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vashist, Y.K., Kutup, A., Musici, S. et al. The GNAS1 T393C single nucleotide polymorphism predicts the natural postoperative course of complete resected esophageal cancer. Cell Oncol. 34, 281–288 (2011). https://doi.org/10.1007/s13402-011-0016-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-011-0016-x

Keywords