Skip to main content
Log in

Insight into the physicochemical properties and thermal behavior of cellulose microcrystals isolated from Aleppo pine using different delignification approaches

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cellulose at different scales from lignocellulosic biomass is an important biopolymer for advanced industrial applications. Nevertheless, pretreatments and delignification processes affect most of the physicochemical properties of the final cellulosic products, such as purity, thermal stability, and mechanical behavior. Hence, it is crucial to find suitable extraction procedures. This study intends to point out the importance of the choice of extraction techniques, and it focuses on the isolation of α-cellulose from Aleppo pine, for which two-delignification processes, namely, kraft or organosolv, were employed, followed by either acidified sodium chlorite or alkaline peroxide treatments. Microcrystalline cellulose (MCC) was subsequently prepared through acid hydrolysis. A comparative study was undertaken to assess the efficiency of each treatment by analyzing the chemical composition, molecular weight distribution, structure, crystallinity, morphology, and thermal stability of the different products. The obtained pure MCC exhibited interesting features such as rod-like shape, high crystallinity (74–85%), and high thermal stability (>342 °C) than the commercial MCC or those derived from other natural sources, for which minor differences are observed for the different MCCs obtained from a procedure to another. Interestingly, the chlorine-free delignification process, i.e., organosolv followed by alkaline hydrogen peroxide treatment, allowed obtaining MCC with outstanding characteristics. The findings of this study demonstrated that the delignification process potentially affected the quality of the extraction of MCC from Aleppo pine, which may find promising applications, especially as polymer reinforcements, dietary food, and pharmaceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article.

References

  1. Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8

    Article  Google Scholar 

  2. Tarchoun AF, Trache D, Derradji M, Bessa W, Belgacemi R (2021) Cellulose nanoparticles: extractions. In: Cellulose nanoparticles: chemistry and fundamentals. The Royal Society of Chemistry, pp 113–148

  3. Yadav C, Saini A, Zhang W, You X, Chauhan I, Mohanty P, Li X (2021) Plant-based nanocellulose: a review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. Int J Biol Macromol 166:1586–1616

    Article  Google Scholar 

  4. Pradeep H, Patel DH, Onkarappa H, Prasanna G, Prateeksha C (2022) Role of nanocellulose in industrial and pharmaceutical sectors-a review. Int J Biol Macromol 207:1038–1047

    Article  Google Scholar 

  5. Gan I, Chow W (2018) Antimicrobial poly (lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag Shelf Life 17:150–161

    Article  Google Scholar 

  6. Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R, Li H, Xie H, Zhang X, Ma M (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr Polym 259:117740

    Article  Google Scholar 

  7. Balea A, Fuente E, Blanco A, Negro C (2019) Nanocelluloses: natural-based materials for fiber-reinforced cement composites. A critical review. Polymers 11(3):518

    Article  Google Scholar 

  8. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–a review. Biotechnol Rep 21:e00316

    Article  Google Scholar 

  9. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52(12):791–806

    Article  Google Scholar 

  10. Bessa W, Trache D, Derradji M, Tarchoun AF (2021) Morphological, thermal and mechanical properties of benzoxazine resin reinforced with alkali treated alfa fibers. Ind Crops Prod 165:113423

    Article  Google Scholar 

  11. Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Hassan T, Haafiz MM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804

    Article  Google Scholar 

  12. Tarchoun AF, Trache D, Klapötke TM (2019) Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int J Biol Macromol 138:837–845

    Article  Google Scholar 

  13. Varghese SM, Bhosale YK, Aruna Nair U, Hema V, Sinija V (2022) Valorisation and Characterization of Allium cepa var. aggregatum biowastes for the production of microcrystalline cellulose. Waste Biomass Valorization 13(4):1931–1944

    Article  Google Scholar 

  14. Zhao X, Cheng F, Hu Y, Cheng R (2022) Facile Extraction of cellulose nanofibrils (Cnfs) from wood using acidic ionic liquid-catalyzed organosolv pretreatment followed by ultrasonic processing. J Nat Fibers 19(13):5697–5708

    Article  Google Scholar 

  15. Nguyen TT, Thi BTN, Phan PT, Le TT, Thi QAN, Bach LG, Nguyen TA, Nguyen NH (2021) Synthesis of microcrystalline cellulose from banana pseudo-stem for adsorption of organics from aqueous solution. Eng Appl Sci Res 48(4):368–378

    Google Scholar 

  16. Loor AEV (2022) Novel use of hydrogen peroxide to convert bleached kraft pulp into dissolving pulp and microfibrillated cellulose. Doctoral dissertation, Université Grenoble Alpes

  17. Sun N, Rodriguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Comm 47(5):1405–1421

    Article  Google Scholar 

  18. da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208

    Article  Google Scholar 

  19. Shatalov AA, Pereira H (2013) High-grade sulfur-free cellulose fibers by pre-hydrolysis and ethanol-alkali delignification of giant reed (Arundo donax L.) stems. Ind Crops Prod 43:623–630

    Article  Google Scholar 

  20. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr Polym 106:77–83

    Article  Google Scholar 

  21. Ait Benhamou A, Kassab Z, Nadifiyine M, Salim MH, Sehaqui H, Moubarik A, El Achaby M (2021) Extraction, characterization and chemical functionalization of phosphorylated cellulose derivatives from Giant Reed Plant. Cellulose 28:4625–4642

    Article  Google Scholar 

  22. Maghchiche A, Haouam A, Immirzi B (2013) Extraction and characterization of Algerian Alfa grass short fibers (Stipa Tenacissima). Chem Chem Technol 7,№ 3:339–344

    Article  Google Scholar 

  23. Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydr Polym 104:223–230

    Article  Google Scholar 

  24. Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86(3):1198–1206

    Article  Google Scholar 

  25. Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Umar Y, Ahmad A (2020) Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Macromol 155:730–739

    Article  Google Scholar 

  26. Shaikh HM, Anis A, Poulose AM, Al-Zahrani SM, Madhar NA, Alhamidi A, Alam MA (2021) Isolation and characterization of alpha and nanocrystalline cellulose from date palm (Phoenix dactylifera L.) trunk mesh. Polymers 13(11):1893

    Article  Google Scholar 

  27. Bessa W, Trache D, Tarchoun AF, Abdelaziz A, Hussin MH, Brosse N (2023) Unraveling the Effect of kraft and organosolv processes on the physicochemical properties and thermal stability of cellulose and its microcrystals produced from Eucalyptus globulus. Sustainability 15(4):3384

    Article  Google Scholar 

  28. Kian L, Saba N, Jawaid M, Fouad H (2020) Characterization of microcrystalline cellulose extracted from olive fiber. Int J Biol Macromol 156:347–353

    Article  Google Scholar 

  29. Harfouche A, Boudjada S, Chettah W, Allam M, Belhou O, Merazga A (2003) Variation and population structure in Aleppo pine (Pinus halepensis Mill.) in Algeria. Silvae Genetica 52(5-6):244–248

    Google Scholar 

  30. Balea A, Blanco Á, Monte MC, Merayo N, Negro C (2016) Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 11(4):8123–8138

    Article  Google Scholar 

  31. Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Blademo Å, Naderi A, Lindström T (2013) Production of microfibrillated cellulose from unbleached kraft pulp of kenaf and scotch pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose 20:2559–2567

    Article  Google Scholar 

  32. Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr Polym 157:1577–1585

    Article  Google Scholar 

  33. García-García D, Balart R, Lopez-Martinez J, Ek M, Moriana R (2018) Optimizing the yield and physico-chemical properties of pine cone cellulose nanocrystals by different hydrolysis time. Cellulose 25:2925–2938

    Article  Google Scholar 

  34. Kumar A, Gupta V, Gaikwad KK (2021) Microfibrillated cellulose from pine cone: extraction, properties, and characterization. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01794-2

  35. Kandhola G, Djioleu A, Rajan K, Labbé N, Sakon J, Carrier DJ, Kim J-W (2020) Maximizing production of cellulose nanocrystals and nanofibers from pre-extracted loblolly pine kraft pulp: a response surface approach. Bioresour Bioprocess 7(1):1–16

    Article  Google Scholar 

  36. Florian TDM, Villani N, Aguedo M, Jacquet N, Thomas HG, Gerin P, Magali D, Richel A (2019) Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods. Ind Crops Prod 132:269–274

    Article  Google Scholar 

  37. Michelin M, Liebentritt S, Vicente AA, Teixeira JA (2018) Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: physicochemical and antioxidant properties. Int J Biol Macromol 120:159–169

    Article  Google Scholar 

  38. Hernández-Hernández H, Chanona-Pérez J, Terrés E, Vega A, Ligero P, Farrera-Rebollo R, Villanueva S (2019) Microscopy and spectroscopy tools for the description of delignification. Cellul Chem Technol 53:87–97

    Article  Google Scholar 

  39. Mamaye M, Kiflie Z, Feleke S, Yimam A (2022) Evaluation and optimization of kraft delignification and single stage hydrogen peroxide bleaching for Ethiopian sugarcane bagasse. J Nat Fibers 19(4):1226–1238

    Article  Google Scholar 

  40. Santos A, Rodríguez F, Gilarranz MA, Moreno D, García-Ochoa F (1997) Kinetic modeling of kraft delignification of Eucalyptus globulus. Ind Eng Chem Res 36(10):4114–4125

    Article  Google Scholar 

  41. Nishide RN, Truong JH, Abu-Omar M (2021) Organosolv fractionation of walnut shell biomass to isolate lignocellulosic components for chemical upgrading of lignin to aromatics. ACS Omega 6(12):8142–8150

    Article  Google Scholar 

  42. Saberikhah E, Rovshandeh JM, Rezayati-Charani P (2011) Organosolv pulping of wheat straw by glycerol. Cellul Chem Technol 45(1):67

    Google Scholar 

  43. Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K (2021) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ 29(1):130–142

    Article  Google Scholar 

  44. Hubbell CA, Ragauskas AJ (2010) Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour Technol 101(19):7410–7415

    Article  Google Scholar 

  45. Pereira PHF, Ornaghi HL Jr, Arantes V, Cioffi MOH (2021) Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydr Res 499:108227

    Article  Google Scholar 

  46. Beroual M, Trache D, Mehelli O, Boumaza L, Tarchoun AF, Derradji M, Khimeche K (2021) Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste Biomass Valorization 12:2779–2793

    Article  Google Scholar 

  47. Lin SY, Dence CW (2012) Methods in lignin chemistry. Springer Science & Business Media, Berlin

  48. Daraei Garmakhany A, Sheykhnazari S (2017) First principles of pretreatment and cracking biomass to fundamental building blocks. In: Introduction to renewable biomaterials: first principles and concepts. Wiley, pp 181–217

  49. Tocco D, Carucci C, Monduzzi M, Salis A, Sanjust E (2021) Recent developments in the delignification and exploitation of grass lignocellulosic biomass. ACS Sustain Chem Eng 9(6):2412–2432

    Article  Google Scholar 

  50. Aprilia NS, Davoudpour Y, Zulqarnain W, Khalil HA, Hazwan CCM, Hossain M, Dungani R, Fizree H, Zaidon A, Haafiz MM (2016) Physicochemical characterization of microcrystalline cellulose extracted from kenaf bast. BioResources 11(2):3875–3889

    Google Scholar 

  51. Bessa W, Trache D, Derradji M, Ambar H, Tarchoun AF, Benziane M, Guedouar B (2020) Characterization of raw and treated Arundo donax L. cellulosic fibers and their effect on the curing kinetics of bisphenol A-based benzoxazine. Int J Biol Macromol 164:2931–2943

    Article  Google Scholar 

  52. Ren H, Shen J, Pei J, Wang Z, Peng Z, Fu S, Zheng Y (2019) Characteristic microcrystalline cellulose extracted by combined acid and enzyme hydrolysis of sweet sorghum. Cellulose 26:8367–8381

    Article  Google Scholar 

  53. Reddy KO, Maheswari CU, Dhlamini M, Mothudi B, Kommula V, Zhang J, Zhang J, Rajulu AV (2018) Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydr Polym 188:85–91

    Article  Google Scholar 

  54. Diarsa M, Gupte A (2021) Preparation, characterization and its potential applications in Isoniazid drug delivery of porous microcrystalline cellulose from banana pseudostem fibers, 3. Biotech 11(7):334

    Google Scholar 

  55. Hussin MH, Pohan NA, Garba ZN, Kassim MJ, Rahim AA, Brosse N, Yemloul M, Fazita MN, Haafiz MM (2016) Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int J Biol Macromol 92:11–19

    Article  Google Scholar 

  56. Gras P, Baker A, Combes C, Rey C, Sarda S, Wright AJ, Smith ME, Hanna JV, Gervais C, Laurencin D (2016) From crystalline to amorphous calcium pyrophosphates: a solid state Nuclear Magnetic Resonance perspective. Acta Biomaterialia 31:348–357

    Article  Google Scholar 

  57. Hassan TM, Hossain MS, Kassim MHM, Ibrahim M, Rawi NFM, Hussin MH (2020) Optimizing the acid hydrolysis process for the isolation of microcrystalline cellulose from oil palm empty fruit bunches using response surface methods. Waste Biomass Valorization 11:2755–2770

    Article  Google Scholar 

  58. Larsson PT, Westermark U, Iversen T (1995) Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydr Res 278(2):339–343

    Article  Google Scholar 

  59. Segal L, Creely JJ, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  Google Scholar 

  60. Kerche EF, Neves RM, Ornaghi HL, Zattera AJ, Schrekker HS (2022) The influence of ionic liquid concentration on microcrystalline cellulose modification. Carbohydr Polym Technol Appl 3:100211

    Google Scholar 

  61. Zhou Y, Zhang X, Zhang J, Cheng Y, Wu J, Yu J, Zhang J (2021) Molecular weight characterization of cellulose using ionic liquids. Polymer Test 93:106985

    Article  Google Scholar 

  62. Nsor-Atindana J, Chen M, Goff HD, Zhong F, Sharif HR, Li Y (2017) Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydr Polym 172:159–174

    Article  Google Scholar 

  63. Xiang LY, Mohammed MAP, Baharuddin AS (2016) Characterisation of microcrystalline cellulose from oil palm fibres for food applications. Carbohydr Polym 148:11–20

    Article  Google Scholar 

  64. Soom RM, Aziz AA, Hassan WHW, Top AGM (2009) Solid-state characteristics of microcrystalline cellulose from oil palm empty fruit bunch fibre. J Oil Palm Res 21(1):613–620

    Google Scholar 

  65. Ismail F, Othman NEA, Wahab NA, Hamid FA, Aziz AA (2021) Preparation of microcrystalline cellulose from oil palm empty fruit bunch fibre using steam-assisted acid hydrolysis. J Adv Res Fluid Mech Therm Sci 81(1):88–98

    Article  Google Scholar 

  66. Katakojwala R, Mohan SV (2020) Microcrystalline cellulose production from sugarcane bagasse: sustainable process development and life cycle assessment. J Clean Prod 249:119342

    Article  Google Scholar 

  67. Sullivan AL, Ball R (2012) Thermal decomposition and combustion chemistry of cellulosic biomass. Atmos Environ 47:133–141

    Article  Google Scholar 

  68. de Assis ACL, Alves LP, Malheiro JPT, Barros ARA, Pinheiro-Santos EE, de Azevedo EP, Alves HDS, Oshiro-Junior JA, Damasceno BPGDL (2019) Opuntia ficus-indica L. Miller (palma forrageira) as an alternative source of cellulose for production of pharmaceutical dosage forms and biomaterials: extraction and characterization. Polymers 11(7):1124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

W.B.: conceptualization, methodology, investigation, data treatment, writing—original draft. D.T.: conceptualization, methodology, resources, investigation, writing—original draft. A.F.T. and A.A.: conceptualization, review and editing. M.H. and N.B.: review and editing the manuscript draft. All authors have approved the initial version of the article.

Corresponding authors

Correspondence to Wissam Bessa or Djalal Trache.

Ethics declarations

Ethical approval

All authors state that they adhere to the ethical responsibilities of authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessa, W., Trache, D., Tarchoun, A.F. et al. Insight into the physicochemical properties and thermal behavior of cellulose microcrystals isolated from Aleppo pine using different delignification approaches. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04678-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04678-9

Keywords

Navigation