Skip to main content
Log in

Development and characterization of active edible film with blueberry residue extract (Vaccinium spp.)

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Blueberry (Vaccinium spp.) processing produces residues high in antioxidant compounds, such as peels, seeds, and stems, which have the potential to be employed in a variety of products. Using extracts containing bioactive components (e.g., polyphenols and anthocyanins) to produce active edible films is an attractive application. In this regard, the objective of this work was the development and characterization of an active edible film with blueberry residue extract. The extracts were obtained by ultrasound-assisted extraction with 60% hydroethanolic solvent (1:10 m/v of residue) for 25 min at 30 ± 2 °C and 80% of total power (132 W) at 40 kHz. The extract was analyzed for total phenolic compounds and antioxidant activity (DPPH). Cornstarch and glycerol were used to formulate the films, which were characterized according to grammage, thickness, moisture, antioxidant activity, color, and visual parameters. The extraction yield was 207.2 mg/g of residue, the IC50 values ranged from 0.118 to 0.144 mg/mL during 28 days of storage, and the average content of phenolic compounds was 58.18 mg GAE/g dry extract. In the active edible films, the grammage ranged from 0.0131 to 0.0143 g/cm2, the thickness was between 0.15 and 0.23 mm, and the moisture content was from 17.19 to 18.00%. The antioxidant activity of the films containing blueberry residue extract ranged from 52.65 to 76.02%, corresponding to extract concentrations of 0.25 and 2.6 mg/mL of filmogenic solution, respectively. The color parameter showed that when the extract was added, the films became less bright, leaning toward red and yellow. In general, the samples demonstrated good integrity, brightness, and clarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bernal LJ, Melo LA, Díaz Moreno C (2014) Evaluation of the antioxidant properties and aromatic profile during maturation of the blackberry (Rubus glaucus Benth) and the bilberry (Vaccinium meridionale Swartz). Rev Fac Nac Agron Medellín 67:7209–7218. https://doi.org/10.15446/rfnam.v67n1.42649

    Article  Google Scholar 

  2. Zapata IC, Sepúlveda-Valencia U, Rojano BA (2015) Efecto del Tiempo de Almacenamiento sobre las Propiedades Fisicoquímicas, Probióticas y Antioxidantes de Yogurt Saborizado con Mortiño (Vaccinium meridionale Sw). Inf tecnológica 26:17–28. https://doi.org/10.4067/S0718-07642015000200004

    Article  Google Scholar 

  3. Shi M, Loftus H, McAinch AJ, Su XQ (2017) Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. J Funct Foods 30:16–29. https://doi.org/10.1016/j.jff.2016.12.036

    Article  Google Scholar 

  4. Gouw VP, Jung J, Zhao Y (2017) Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients. LWT 80:136–144. https://doi.org/10.1016/j.lwt.2017.02.015

    Article  Google Scholar 

  5. Tagliani C, Perez C, Curutchet A et al (2019) Blueberry pomace, valorization of an industry by-product source of fibre with antioxidant capacity. Food Sci Technol 39:644–651. https://doi.org/10.1590/fst.00318

    Article  Google Scholar 

  6. Yang W, Guo Y, Liu M et al (2022) Structure and function of blueberry anthocyanins: a review of recent advances. J Funct Foods 88:104864. https://doi.org/10.1016/j.jff.2021.104864

    Article  Google Scholar 

  7. Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124. https://doi.org/10.1021/jf040411p

    Article  Google Scholar 

  8. Paes J, Dotta R, Barbero GF, Martínez J (2014) Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J Supercrit Fluids 95:8–16. https://doi.org/10.1016/j.supflu.2014.07.025

    Article  Google Scholar 

  9. Machado APDF, Pereira ALD, Barbero GF, Martínez J (2017) Recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chem 231:1–10. https://doi.org/10.1016/j.foodchem.2017.03.060

    Article  Google Scholar 

  10. Neuenfeldt NH, de Moraes DP, de Deus C et al (2022) Blueberry phenolic composition and improved stability by microencapsulation. Food Bioprocess Technol 15:750–767. https://doi.org/10.1007/s11947-021-02749-1

    Article  Google Scholar 

  11. de Moraes CT, Haas Costa TM, de Oliveira RA, Hickmann Flôres S (2016) Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Ind Crops Prod 87:218–228. https://doi.org/10.1016/j.indcrop.2016.04.039

    Article  Google Scholar 

  12. Jesus TFP de (2013) O mirtilo e suas propriedades terapêuticas. Dissertation, Universidade Fernando Pessoa

  13. Li C, Feng J, Huang W-Y, An X-T (2013) Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei ) in Nanjing. J Agric Food Chem 61:523–531. https://doi.org/10.1021/jf3046158

    Article  Google Scholar 

  14. Struck S, Plaza M, Turner C, Rohm H (2016) Berry pomace - a review of processing and chemical analysis of its polyphenols. Int J Food Sci Technol 51:1305–1318. https://doi.org/10.1111/ijfs.13112

    Article  Google Scholar 

  15. Zeng F, Zeng H, Ye Y et al (2021) Preparation of acylated blueberry anthocyanins through an enzymatic method in an aqueous/organic phase: effects on their colour stability and pH-response characteristics. Food Funct 12:6821–6829. https://doi.org/10.1039/D1FO00400J

    Article  Google Scholar 

  16. Mohd Basri MS, Abdul Karim Shah NN, Sulaiman A et al (2021) Progress in the valorization of fruit and vegetable wastes: active packaging, biocomposites, by-products, and innovative technologies used for bioactive compound extraction. Polymers (Basel) 13:3503. https://doi.org/10.3390/polym13203503

    Article  Google Scholar 

  17. da Rosa GS, Vanga SK, Gariepy Y, Raghavan V (2019) Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innov Food Sci Emerg Technol 58:102234. https://doi.org/10.1016/j.ifset.2019.102234

    Article  Google Scholar 

  18. He B, Zhang L-L, Yue X-Y et al (2016) Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem 204:70–76. https://doi.org/10.1016/j.foodchem.2016.02.094

    Article  Google Scholar 

  19. Castro MDL, Capote FP (2007) Analytical applications of ultrasound. Elsevier, United Kingdom

    Google Scholar 

  20. Cárcel JA, García-Pérez JV, Mulet A et al (2010) Ultrasonically assisted antioxidant extraction from grape stalks and olive leaves. Phys Procedia 3:147–152. https://doi.org/10.1016/j.phpro.2010.01.021

    Article  Google Scholar 

  21. Veillet S, Tomao V, Chemat F (2010) Ultrasound assisted maceration: an original procedure for direct aromatisation of olive oil with basil. Food Chem 123:905–911. https://doi.org/10.1016/j.foodchem.2010.05.005

    Article  Google Scholar 

  22. Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M (2022) Chitosan for food packaging: recent advances in active and intelligent films. Food Hydrocoll 124:107328. https://doi.org/10.1016/j.foodhyd.2021.107328

    Article  Google Scholar 

  23. Kumar L, Ramakanth D, Akhila K, Gaikwad KK (2022) Edible films and coatings for food packaging applications: a review. Environ Chem Lett 20:875–900. https://doi.org/10.1007/s10311-021-01339-z

    Article  Google Scholar 

  24. Quesada J, Sendra E, Navarro C, Sayas-Barberá E (2016) Antimicrobial active packaging including chitosan films with Thymus vulgaris L. essential oil for ready-to-eat meat. Foods 5:57. https://doi.org/10.3390/foods5030057

    Article  Google Scholar 

  25. Hamann D, Puton BMS, Comin T et al (2022) Active edible films based on green tea extract and gelatin for coating of fresh sausage. Meat Sci 194:108966. https://doi.org/10.1016/j.meatsci.2022.108966

    Article  Google Scholar 

  26. Farhan A, Hani NM (2020) Active edible films based on semi-refined κ-carrageenan: antioxidant and color properties and application in chicken breast packaging. Food Packag Shelf Life 24:100476. https://doi.org/10.1016/j.fpsl.2020.100476

    Article  Google Scholar 

  27. Biao Y, Yuxuan C, Qi T et al (2019) Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels. Food Hydrocoll 97:105197. https://doi.org/10.1016/j.foodhyd.2019.105197

    Article  Google Scholar 

  28. Matta E, Tavera-Quiroz MJ, Bertola N (2019) Active edible films of methylcellulose with extracts of green apple (Granny Smith) skin. Int J Biol Macromol 124:1292–1298. https://doi.org/10.1016/j.ijbiomac.2018.12.114

    Article  Google Scholar 

  29. Sanchez LT, Pinzon MI, Villa CC (2022) Development of active edible films made from banana starch and curcumin-loaded nanoemulsions. Food Chem 371:131121. https://doi.org/10.1016/j.foodchem.2021.131121

    Article  Google Scholar 

  30. Assis OBG, de Britto D (2014) Revisão: coberturas comestíveis protetoras em frutas: fundamentos e aplicações. Brazilian J Food Technol 17:87–97. https://doi.org/10.1590/bjft.2014.019

    Article  Google Scholar 

  31. Ugalde ML, de Cezaro AM, Vedovatto F et al (2017) Active starch biopolymeric packaging film for sausages embedded with essential oil of Syzygium aromaticum. J Food Sci Technol 54:2171–2175. https://doi.org/10.1007/s13197-017-2624-6

    Article  Google Scholar 

  32. Piovesan N, Viera VB, Mello RO et al (2017) Microwave-assisted extraction of bioactive compounds from blueberry (Vaccinium ashei Reade) and their antioxidant and antimicrobial capacity. Int Food Res J 24:2526–2533

    Google Scholar 

  33. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  Google Scholar 

  34. Brand-Williams CME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  35. Ugalde ML (2014) Biofilmes ativos com incorporação de óleos essenciais. Dissertation, Universidade Regional Integrada do Alto Uruguai e das Missões

  36. Instituto Adolfo Lutz (2008) Métodos físico-químicos para análise de alimentos. Instituto Adolfo Lutz, São Paulo

    Google Scholar 

  37. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24:770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003

    Article  Google Scholar 

  38. Monterrey ES, do A. Sobral PJ (1999) Caracterização de propriedades mecânicas e óticas de biofilmes a base de proteínas miofibrilares de tilápia do nilo usando uma metodologia de superfície-resposta. Food Sci Technol 19:294–301. https://doi.org/10.1590/S0101-20611999000200025

    Article  Google Scholar 

  39. Bruni GP, Machado HB, Morais MM, et al (2015) Estudo do método de ultrassom para a extração de óleo de sementes de uva provenientes de rejeitos do processo vinícola. In: Anais do XX Congresso Brasileiro de Engenharia Química. Editora Edgard Blücher, São Paulo 3859–3866

  40. de Rocha CGJ, Procópio FR, Mendonça AC et al (2017) Optimization of ultrasound-assisted extraction of phenolic compounds from jussara (Euterpe edulis M.) and blueberry (Vaccinium myrtillus) fruits. Food Sci Technol 38:45–53. https://doi.org/10.1590/1678-457x.36316

    Article  Google Scholar 

  41. Righi da Rosa J, Nunes GL, Motta MH et al (2019) Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll 89:742–748. https://doi.org/10.1016/j.foodhyd.2018.11.042

    Article  Google Scholar 

  42. Paes J (2016) Concentração de compostos bioativos de resíduos de Mirtilo (Vaccinium myrtillus l.) usando extração com CO2 supercrítico e nanofiltração. Dissertation, Universidade Estadual de Campinas

  43. Sousa MSB, Vieira LM, de Lima A (2011) Fenólicos totais e capacidade antioxidante in vitro de resíduos de polpas de frutas tropicais. Brazilian J Food Technol 14:202–210. https://doi.org/10.4260/BJFT2011140300024

    Article  Google Scholar 

  44. Henrique CM, Cereda MP, Sarmento SBS (2008) Características físicas de filmes biodegradáveis produzidos a partir de amidos modificados de mandioca. Ciência e Tecnol Aliment 28:231–240. https://doi.org/10.1590/S0101-20612008000100033

    Article  Google Scholar 

  45. de Souza CO, Silva LT, Druzian JI (2012) Estudo comparativo da caracterização de filmes biodegradáveis de amido de mandioca contendo polpas de manga e de acerola. Quim Nova 35:262–267. https://doi.org/10.1590/S0100-40422012000200006

    Article  Google Scholar 

  46. de Soares IFO, Fakhouri FM, de Giraldi ALFM, Buontempo RC (2014) Síntese e caracterização de biofilmes de amido plastificados com glicerol ou triacetina. FOCO Cad Estud e Pesqui 5:79–98

    Google Scholar 

  47. Mali S, Grossmann MVE, Garcı́a MA et al (2004) Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr Polym 56:129–13. https://doi.org/10.1016/j.carbpol.2004.01.004

    Article  Google Scholar 

  48. Dantas EA, Costa SS, Cruz LS et al (2015) Caracterização e avaliação das propriedades antioxidantes de filmes biodegradáveis incorporados com polpas de frutas tropicais. Ciência Rural 45:142–148. https://doi.org/10.1590/0103-8478cr20131458

    Article  Google Scholar 

  49. Moreira L, Dias LG, Pereira JA, Estevinho L (2008) Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food Chem Toxicol 46:3482–3485. https://doi.org/10.1016/j.fct.2008.08.025

    Article  Google Scholar 

  50. Pathare PB, Opara UL, Al-Said FA-J (2013) Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Technol 6:36–60. https://doi.org/10.1007/s11947-012-0867-9

    Article  Google Scholar 

  51. Kurek M, Garofulić IE, Bakić MT et al (2018) Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocoll 84:238–246. https://doi.org/10.1016/j.foodhyd.2018.05.050

    Article  Google Scholar 

  52. Luchese CL, Abdalla VF, Spada JC, Tessaro IC (2018) Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocoll 82:209–218. https://doi.org/10.1016/j.foodhyd.2018.04.010

    Article  Google Scholar 

  53. Liu Z, Han JH (2005) Film-forming characteristics of starches. J Food Sci 70:E31–E36. https://doi.org/10.1111/j.1365-2621.2005.tb09034.x

    Article  Google Scholar 

  54. Santos da AEF (2011) Estudo de filmes biodegradáveis de amido de milho modificados por plasma de SF6. Universidade Federal do Rio de Janeiro, HMDSO e acetileno

    Google Scholar 

  55. Pavlath AE, Orts W (2009) Edible films and coatings: why, what, and how? Edible films and coatings for food applications. Springer, New York, New York, NY, pp 1–23

    Google Scholar 

Download references

Funding

This study was financed in part by the National Council for Scientific and Technological Development – Brazil (CNPq), the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES) – Finance Code 001, and the Research Support Foundation of the State of Rio Grande do Sul – Brazil (FAPERGS).

Author information

Authors and Affiliations

Authors

Contributions

P. Griep and J. Ferreira: conceptualization, investigation, formal analysis, methodology, writing—original draft; B. Fischer: formal analysis, methodology; I. A. Fernandes: resources, writing—original draft; R. L. Cansian: methodology, writing—review and editing; A. Junges and G. T. Backes: supervision, conceptualization, writing—review and editing.

Corresponding author

Correspondence to Alexander Junges.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griep, P., Ferreira, J., Fischer, B. et al. Development and characterization of active edible film with blueberry residue extract (Vaccinium spp.). Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04317-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04317-3

Keywords

Navigation