Skip to main content

Advertisement

Log in

Practical aspects of biowastes conversion to fertilizers

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The paper presents different aspects of biomass-based fertilizer production along with technological challenges, relevant law — the European Union guidelines concerning renewable resources, in particular bio-based wastes valorization for fertilizer purposes — and products introduction to the market. Fertilizer technology employs different types of biosolids: sewage sludge, ashes from sewage sludge, agricultural residues, and food waste. Organo-mineral fertilizers can be formulated from different mass streams of biological origin: biomass processed by biological conversion (aerobic or anaerobic), chemical conditioning (acids or alkali), or thermal processes (combustion, pyrolysis). Through a combination of different types of processed biomass (e.g., biosolids conditioned with mineral acid can be neutralized and granulated with ashes from the biomass combustion) and by composition correction, it is possible to produce organic-mineral fertilizers. Particular attention was paid to relevant law (agriculture and non-agricultural applications) and technological problems such as large-scale installations. The available fertilizer production technologies constitute a part of the concept of bio-based circular economy, which in turn could lead to sustainable development as envisioned by the new European Green Deal strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Nitrogen fertilizer prices continue to push higher. https://www.dtnpf.com/agriculture/web/ag/crops/article/2021/12/15/nitrogen-fertilizer-prices-continue. Accessed 2 Feb 2022

  2. Tesio E, Conti I, Cervigni G (2022) High gas prices in Europe: a matter for policy intervention? Policy Briefs. https://doi.org/10.2870/260985

    Article  Google Scholar 

  3. Hidalgo D, Corona F, Martín-Marroquín JM (2021) Nutrient recycling: from waste to crop. Biomass Conversion and Biorefinery 11:207–217. https://doi.org/10.1007/S13399-019-00590-3

    Article  MATH  Google Scholar 

  4. Gao S, Lu D, Qian T, Zhou Y (2021) Thermal hydrolyzed food waste liquor as liquid organic fertilizer. Sci Total Environ 775:145786. https://doi.org/10.1016/J.SCITOTENV.2021.145786

    Article  Google Scholar 

  5. Engida T, Mekonnen A, Wu JM, et al (2020) Review paper on beverage agro-industrial wastewater treatment plant bio-sludge for fertilizer potential in Ethiopia. Applied Ecology and Environmental Research 18:33–57. https://doi.org/10.15666/aeer/1801_033057

  6. Pahalvi HN, Rafiya L, Rashid S et al (2021) Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers 2:1–20. https://doi.org/10.1007/978-3-030-61010-4_1

    Article  Google Scholar 

  7. Macura B, Johannesdottir SL, Piniewski M et al (2019) Effectiveness of ecotechnologies for recovery of nitrogen and phosphorus from anaerobic digestate and effectiveness of the recovery products as fertilisers: a systematic review protocol. Environmental Evidence 8:29

    Article  Google Scholar 

  8. Adnan N, Nordin SM, Bahruddin MA, Tareq AH (2019) A state-of-the-art review on facilitating sustainable agriculture through green fertilizer technology adoption: assessing farmers behavior. Trends Food Sci Technol 86:439–452

    Article  Google Scholar 

  9. Kyakuwaire M, Olupot G, Amoding A et al (2019) How safe is chicken litter for land application as an organic fertilizer? A review. Int J Environ Res Public Health 16. https://doi.org/10.3390/ijerph16193521

  10. Carey DE, Yang Y, McNamara PJ, Mayer BK (2016) Recovery of agricultural nutrients from biorefineries. Biores Technol 215:186–198

    Article  MATH  Google Scholar 

  11. Günther S, Grunert M, Müller S (2018) Overview of recent advances in phosphorus recovery for fertilizer production. Eng Life Sci 18:434–439. https://doi.org/10.1002/elsc.201700171

    Article  MATH  Google Scholar 

  12. Tesfaye T, Sithole B, Ramjugernath D (2017) Valorisation of chicken feathers: a review on recycling and recovery route—current status and future prospects. Clean Technol Environ Policy 19:2363–2378

    Article  Google Scholar 

  13. Monfet E, Aubry G, Ramirez AA (2017) Nutrient removal and recovery from digestate: a review of the technology. 9:247–262. https://doi.org/10.1080/17597269.2017.1336348

    Article  Google Scholar 

  14. Stillitano T, Spada E, Iofrida N et al (2021) Sustainable agri-food processes and circular economy pathways in a life cycle perspective: state of the art of applicative research. Sustainability 13:2472. https://doi.org/10.3390/SU13052472

    Article  Google Scholar 

  15. Guilayn F, Rouez M, Crest M et al (2020) Valorization of digestates from urban or centralized biogas plants: a critical review. Reviews in Environmental Science and Bio/Technology 19:419–462. https://doi.org/10.1007/s11157-020-09531-3

    Article  Google Scholar 

  16. Sharma G, Kaur M, Punj S, Singh K (2020) Biomass as a sustainable resource for value-added modern materials: a review. Biofuels, Bioprod Biorefin 14:673–695. https://doi.org/10.1002/bbb.2079

    Article  MATH  Google Scholar 

  17. Final report — heavy metals and organic compounds from wastes used as organic fertilisers, ENV.A.2./ETU/2001/0024. https://ec.europa.eu/environment/pdf/waste/compost/hm_finalreport.pdf. Accessed 29 Apr 2021

  18. EUR-Lex - 32019D2010 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:32019D2010. Accessed 29 Apr 2021

  19. EUR-Lex - 32019R1009 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009. Accessed 29 Apr 2021

  20. EUR-Lex - 31991R2092 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31991R2092. Accessed 29 Apr 2021

  21. EUR-Lex - 32002R1774 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX%3A32002R1774. Accessed 29 Apr 2021

  22. EUR-Lex - 32009R1069 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R1069. Accessed 29 Apr 2021

  23. Fan H, Li F, Guo Q, Guo M (2020) Effect of high silicon-aluminum coal ashes on sintering and fusion characteristics of a potassium-rich biomass ash. J Energy Inst 93:1781–1789. https://doi.org/10.1016/J.JOEI.2020.03.009

    Article  MATH  Google Scholar 

  24. Tan Z, Lagerkvist A (2011) Phosphorus recovery from the biomass ash: a review. Renew Sustain Energy Rev 15:3588–3602. https://doi.org/10.1016/J.RSER.2011.05.016

    Article  MATH  Google Scholar 

  25. Bachmaier H, Kuptz D, Hartmann H et al (2021) Wood ashes from grate-fired heat and power plants: evaluation of nutrient and heavy metal contents. Sustainability 13:5482. https://doi.org/10.3390/SU13105482

    Article  MATH  Google Scholar 

  26. EUR-Lex - 32003R2003 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:32003R2003. Accessed 29 Apr 2021

  27. EUR-Lex - 32009R1107 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX%3A32009R1107. Accessed 29 Apr 2021

  28. Huygens D, Saveyn H, Tonini D, et al (2018) Pre-final STRUBIAS Report, DRAFT STRUBIAS recovery rules and market study for precipitated phosphate salts & derivates, thermal oxidation materials & derivates and pyrolysis & gasification materials in view of their possible inclusion as component material

  29. Huygens D, Saveyn H, Tonini D, et al (2019) Technical proposals for selected new fertilising materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009). Publications Office of the European Union

  30. Kulczycka J, Lewandowska A, Kowalski Z, Lelek Ł (2017) Principles of environmental assessment in the lifecycle of products. Inżynieria Ekologiczna 18:189–195. https://doi.org/10.12912/23920629/67311

  31. Lewandowska A (2019) Multifunctionality of product systems—a general insight from the circular economy’s perspective. Acta Innovations 76–84. https://doi.org/10.32933/actainnovations.30.8

  32. Sfez S, De Meester S, Vlaeminck SE, Dewulf J (2019) Improving the resource footprint evaluation of products recovered from wastewater: a discussion on appropriate allocation in the context of circular economy. Resour Conserv Recycl 148:132–144. https://doi.org/10.1016/j.resconrec.2019.03.029

    Article  Google Scholar 

  33. Paes LAB, Bezerra BS, Deus RM et al (2019) Organic solid waste management in a circular economy perspective—a systematic review and SWOT analysis. J Clean Prod 239:118086. https://doi.org/10.1016/j.jclepro.2019.118086

    Article  Google Scholar 

  34. Wainaina S, Awasthi MK, Sarsaiya S et al (2020) Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresource Technology 301:122778

    Article  Google Scholar 

  35. Duque-Acevedo M, Belmonte-Ureña LJ, Cortés-García FJ, Camacho-Ferre F (2020) Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation 22:e00902

    Article  Google Scholar 

  36. Sustainable food waste reduction solutions bolster our bioeconomy | Results In Brief | CORDIS | European Commission. https://cordis.europa.eu/article/id/410208-sustainable-food-waste-reduction-solutions-bolster-our-bioeconomy. Accessed 29 Apr 2021

  37. Sánchez-Rodríguez AR, Carswell AM, Shaw R et al (2018) Advanced processing of food waste based digestate for mitigating nitrogen losses in a winter wheat crop. Frontiers in Sustainable Food Systems 2:35. https://doi.org/10.3389/FSUFS.2018.00035/BIBTEX

    Article  Google Scholar 

  38. Ren AT, Abbott LK, Chen Y et al (2020) Nutrient recovery from anaerobic digestion of food waste: impacts of digestate on plant growth and rhizosphere bacterial community composition and potential function in ryegrass. Biol Fertil Soils 56:973–989. https://doi.org/10.1007/S00374-020-01477-6/FIGURES/6

    Article  Google Scholar 

  39. Fernandes F, Silkina A, Fuentes-Grünewald C et al (2020) Valorising nutrient-rich digestate: dilution, settlement and membrane filtration processing for optimisation as a waste-based media for microalgal cultivation. Waste Manage 118:197–208. https://doi.org/10.1016/J.WASMAN.2020.08.037

    Article  Google Scholar 

  40. Cristina G, Camelin E, Pugliese M et al (2019) Evaluation of anaerobic digestates from sewage sludge as a potential solution for improvement of soil fertility. Waste Manage 99:122–134. https://doi.org/10.1016/J.WASMAN.2019.08.018

    Article  Google Scholar 

  41. Elalami D, Monlau F, Carrere H et al (2020) Effect of coupling alkaline pretreatment and sewage sludge co-digestion on methane production and fertilizer potential of digestate. Sci Total Environ 743:140670. https://doi.org/10.1016/J.SCITOTENV.2020.140670

    Article  Google Scholar 

  42. Somers MH, Azman S, Bollansée G et al (2020) Behavior of trace elements and micronutrients in manure digestate during ozone treatment. Chemosphere 252:126477. https://doi.org/10.1016/J.CHEMOSPHERE.2020.126477

    Article  Google Scholar 

  43. Bolzonella D, Fatone F, Gottardo M, Frison N (2018) Nutrients recovery from anaerobic digestate of agro-waste: techno-economic assessment of full scale applications. J Environ Manage 216:111–119. https://doi.org/10.1016/J.JENVMAN.2017.08.026

    Article  Google Scholar 

  44. Radziemska M, Vaverková MD, Adamcová D et al (2019) Valorization of fish waste compost as a fertilizer for agricultural use. Waste and Biomass Valorization 10:2537–2545. https://doi.org/10.1007/S12649-018-0288-8/TABLES/5

    Article  Google Scholar 

  45. Erana FG, Tenkegna TA, Asfaw SL (2019) Effect of agro industrial wastes compost on soil health and onion yields improvements: study at field condition. International Journal of Recycling of Organic Waste in Agriculture 8:161–171. https://doi.org/10.1007/S40093-019-0286-2/TABLES/6

    Article  Google Scholar 

  46. Thomas BW, Luo Y, Li C, Hao X (2016) Utilizing composted beef cattle manure and slaughterhouse waste as nitrogen and phosphorus fertilizers for calcareous soil. 25:102–111. https://doi.org/10.1080/1065657X.2016.1219681

  47. Gorazda K, Tarko B, Werle S, Wzorek Z (2018) Sewage sludge as a fuel and raw material for phosphorus recovery: combined process of gasification and P extraction. Waste Manage 73:404–415. https://doi.org/10.1016/J.WASMAN.2017.10.032

    Article  Google Scholar 

  48. Thomsen TP, Sárossy Z, Ahrenfeldt J et al (2017) Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge. J Environ Manage 198:308–318. https://doi.org/10.1016/J.JENVMAN.2017.04.072

    Article  MATH  Google Scholar 

  49. Tran QT, Maeda M, Oshita K, Takaoka M (2017) Phosphorus release from cattle manure ash as soil amendment in laboratory-scale tests. 63:369–376. https://doi.org/10.1080/00380768.2017.1355217

    Article  Google Scholar 

  50. Zhang J, Sun G, Liu J et al (2020) Co-combustion of textile dyeing sludge with cattle manure: assessment of thermal behavior, gaseous products, and ash characteristics. J Clean Prod 253:119950. https://doi.org/10.1016/J.JCLEPRO.2019.119950

    Article  Google Scholar 

  51. Kootstra AMJ, Brilman DWF Wim, Kersten SRA, (2019) Dissolution of phosphate from pig manure ash using organic and mineral acids. Waste Manage 88:141–146. https://doi.org/10.1016/J.WASMAN.2019.03.038

    Article  Google Scholar 

  52. Kratz S, Vogel C, Adam C (2019) Agronomic performance of P recycling fertilizers and methods to predict it: a review. Nutr Cycl Agroecosyst 115:1–39

    Article  MATH  Google Scholar 

  53. Rorat A, Courtois P, Vandenbulcke F, Lemiere S (2019) Sanitary and environmental aspects of sewage sludge management. In: Industrial and municipal sludge: emerging concerns and scope for resource recovery. Elsevier, pp 155–180

  54. Fang L, Wang Q, Li J et al (2020) Feasibility of wet-extraction of phosphorus from incinerated sewage sludge ash (ISSA) for phosphate fertilizer production: a critical review. Crit Rev Environ Sci Technol 1–33. https://doi.org/10.1080/10643389.2020.1740545

  55. Wang Q, Li J shan, Tang P et al (2018) Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. Journal of Cleaner Production 181:717–725. https://doi.org/10.1016/j.jclepro.2018.01.254

    Article  Google Scholar 

  56. Wang F, Ouyang D, Zhou Z et al (2021) Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J Energy Chem 57:247–280. https://doi.org/10.1016/j.jechem.2020.08.060

    Article  MATH  Google Scholar 

  57. Lanzerstorfer C (2019) Potential of industrial de-dusting residues as a source of potassium for fertilizer production—a mini review. Resour Conserv Recycl 143:68–76

    Article  MATH  Google Scholar 

  58. Alao B, Falowo A, Chulayo A, Muchenje V (2017) The potential of animal by-products in food systems: production, prospects and challenges. Sustainability 9:1089. https://doi.org/10.3390/su9071089

    Article  Google Scholar 

  59. Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49:278–293

    Article  Google Scholar 

  60. Sharrock P, Fiallo M, Nzihou A, Chkir M (2009) Hazardous animal waste carcasses transformation into slow release fertilizers. J Hazard Mater 167:119–123. https://doi.org/10.1016/j.jhazmat.2008.12.090

    Article  Google Scholar 

  61. Rao JR, Watabe M, Stewart TA et al (2007) Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands. Waste Manage 27:1117–1128. https://doi.org/10.1016/j.wasman.2006.06.010

    Article  Google Scholar 

  62. Shen Y, Tan MTT, Chong C et al (2017) An environmental friendly animal waste disposal process with ammonia recovery and energy production: experimental study and economic analysis. Waste Manage 68:636–645. https://doi.org/10.1016/j.wasman.2017.07.027

    Article  MATH  Google Scholar 

  63. Jensen PD, Sullivan T, Carney C, Batstone DJ (2014) Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion. Appl Energy 136:23–31. https://doi.org/10.1016/j.apenergy.2014.09.009

    Article  Google Scholar 

  64. Martin-Rios C, Demen-Meier C, Gössling S, Cornuz C (2018) Food waste management innovations in the foodservice industry. Waste Manage 79:196–206. https://doi.org/10.1016/j.wasman.2018.07.033

    Article  Google Scholar 

  65. Mak TMW, Xiong X, Tsang DCW et al (2020) Sustainable food waste management towards circular bioeconomy: policy review, limitations and opportunities. Bioresource Technology 297:122497

    Article  Google Scholar 

  66. Negri C, Ricci M, Zilio M et al (2020) Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: a review. Renewable and Sustainable Energy Reviews 133:110138

    Article  MATH  Google Scholar 

  67. Slorach PC, Jeswani HK, Cuéllar-Franca R, Azapagic A (2019) Environmental sustainability of anaerobic digestion of household food waste. J Environ Manage 236:798–814. https://doi.org/10.1016/j.jenvman.2019.02.001

    Article  Google Scholar 

  68. Ochoa C, Hernández MA, Bayona OL et al (2021) Phosphorus recovery by struvite from anaerobic co-digestion effluents during residual biomass treatment. Biomass Conversion and Biorefinery 11:261–274. https://doi.org/10.1007/S13399-020-01146-6/FIGURES/7

    Article  Google Scholar 

  69. Cheong JC, Lee JTE, Lim JW et al (2020) Closing the food waste loop: food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Sci Total Environ 715:136789. https://doi.org/10.1016/j.scitotenv.2020.136789

    Article  Google Scholar 

  70. Du C, Abdullah JJ, Greetham D et al (2018) Valorization of food waste into biofertiliser and its field application. J Clean Prod 187:273–284. https://doi.org/10.1016/j.jclepro.2018.03.211

    Article  MATH  Google Scholar 

  71. Ren Y, Yu M, Wu C et al (2018) A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Biores Technol 247:1069–1076

    Article  MATH  Google Scholar 

  72. Chong JWR, Yew GY, Khoo KS et al (2021) Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates. J Environ Manage 293:112782. https://doi.org/10.1016/J.JENVMAN.2021.112782

    Article  Google Scholar 

  73. Chong JWR, Khoo KS, Yew GY et al (2021) Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: a review. Biores Technol 342:125947. https://doi.org/10.1016/J.BIORTECH.2021.125947

    Article  MATH  Google Scholar 

  74. Yu H, Ding W, Luo J et al (2012) Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil and Tillage Research 124:170–177. https://doi.org/10.1016/J.STILL.2012.06.011

    Article  Google Scholar 

  75. Gogoi B, Borah N, Baishya A et al (2021) Enhancing soil ecosystem services through sustainable integrated nutrient management in double rice-cropping system of North-East India. Ecol Ind 132:108262. https://doi.org/10.1016/J.ECOLIND.2021.108262

    Article  MATH  Google Scholar 

  76. Dhaliwal SS, Naresh RK, Mandal A et al (2019) Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. J Plant Nutr 42:2873–2900. https://doi.org/10.1080/01904167.2019.1659337

    Article  Google Scholar 

  77. Place F, Barrett CB, Freeman HA et al (2003) Prospects for integrated soil fertility management using organic and inorganic inputs: evidence from smallholder African agricultural systems. Food Policy 28:365–378. https://doi.org/10.1016/j.foodpol.2003.08.009

    Article  Google Scholar 

  78. Bationo A, Waswa BS (2011) New challenges and opportunities for integrated soil fertility management in Africa. Innovations as key to the Green Revolution in Africa. Springer, Netherlands, pp 3–17

    Chapter  Google Scholar 

  79. Mponela P, Kassie GT, Tamene LD (2018) Simultaneous adoption of integrated soil fertility management technologies in the Chinyanja Triangle, Southern Africa. Nat Res Forum 42:172–184. https://doi.org/10.1111/1477-8947.12155

    Article  Google Scholar 

  80. Nkonya E, Mirzabaev A, von Braun J (2015) Economics of land degradation and improvement—a global assessment for sustainable development. Springer International Publishing

  81. Toenniessen G, Adesina A, DeVries J (2008) Building an alliance for a Green Revolution in Africa. Ann N Y Acad Sci 1136:233–242. https://doi.org/10.1196/annals.1425.028

    Article  MATH  Google Scholar 

  82. AGRIFEED (Italy). https://www.agrifeed.it/en/. Accessed 29 Apr 2021

  83. Ecofertis — green fertilizers (India). https://ecofertis.eu/en/home/. Accessed 29 Apr 2021

  84. COMPO (Canada). https://www.compo.com/int/contact. Accessed 29 Apr 2021

  85. Erisman JW, Sutton MA, Galloway J et al (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639. https://doi.org/10.1038/ngeo325

    Article  MATH  Google Scholar 

  86. Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22. https://doi.org/10.1016/j.foodpol.2010.11.012

    Article  MATH  Google Scholar 

  87. Vries de W, Grinsven HJM van, contributions from Ayyappan with S, Fichelet P V (2013) Published by the Centre for Ecology and Hydrology (CEH), Edinburgh UK, on behalf of the Global Partnership on Nutrient Management (GPNM) and the International Nitrogen Initiative (INI). Our nutrient world: the challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative

  88. Petersen SO, Andersen AJ, Eriksen J (2012) Effects of cattle slurry acidification on ammonia and methane evolution during storage. J Environ Qual 41:88–94. https://doi.org/10.2134/jeq2011.0184

    Article  Google Scholar 

  89. Kai P, Pedersen P, Jensen JE et al (2008) A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions. Eur J Agron 28:148–154. https://doi.org/10.1016/j.eja.2007.06.004

    Article  MATH  Google Scholar 

  90. Nørgaard JV, Fernández JA, Sørensen KU et al (2010) Effect of benzoic acid supplementation on acid-base status and mineral metabolism in catheterized growing pigs. Livest Sci 134:116–118. https://doi.org/10.1016/j.livsci.2010.06.115

    Article  MATH  Google Scholar 

  91. Morton J, Tillman R, Morton A (2019) Review of research on pasture yield responses to fine particle application of fertiliser in New Zealand. N Z J Agric Res 62:210–223. https://doi.org/10.1080/00288233.2018.1474768

    Article  MATH  Google Scholar 

  92. Beig B, Niazi MBK, Jahan Z et al (2020) Coating materials for slow release of nitrogen from urea fertilizer: a review. J Plant Nutr 43:1510–1533. https://doi.org/10.1080/01904167.2020.1744647

    Article  MATH  Google Scholar 

  93. US20170232419A1 — high value organic-enhanced inorganic fertilizers — Google Patents. https://patents.google.com/patent/US20170232419A1/en?q=waste+fertilizers&oq=waste+fertilizers+. Accessed 26 Apr 2021

  94. FR2799131A1 — stabilizing animal, urban or industrial waste, specifically to form fertilizer or substitute fuel, by mixing with calcium oxide to cause exothermic reaction and solidifying using calcium oxide particles — Google Patents. https://patents.google.com/patent/FR2799131A1/en?q=waste+fertilizers+foot+waste&oq=waste+fertilizers+foot+waste. Accessed 26 Apr 2021

  95. RU2449953C2 — method of treating sewage sludge and producing inorganic fertiliser with high nitrogen content and rich in bioorganic substances — Google Patents. https://patents.google.com/patent/RU2449953C2/en?q=waste+fertilizers&oq=waste+fertilizers. Accessed 26 Apr 2021

  96. CN103145463A — organic fertilizer with livestock and poultry manure and preparation method thereof — Google Patents. https://patents.google.com/patent/CN103145463A/en?q=animal+manure+fertilizers&oq=animal+manure+fertilizers. Accessed 26 Apr 2021

  97. ES1168908U — machine for the industrial manufacture of biofertilizers based on compost tea and its derivatives. (Machine-translation by Google Translate, not legally binding) - Google Patents. https://patents.google.com/patent/ES1168908U/en?q=biofertilizers&oq=biofertilizers+. Accessed 26 Apr 2021

  98. ES2741133T3 — high value fertilizer bioorganically increased — Google Patents. https://patents.google.com/patent/ES2741133T3/en?q=waste+fertilizers&oq=waste+fertilizers+. Accessed 26 Apr 2021

  99. CN103910553A — organic-inorganic compound fertilizer particles and preparation method thereof — Google Patents. https://patents.google.com/patent/CN103910553A/en?q=waste+fertilizers&oq=waste+fertilizers+. Accessed 26 Apr 2021

  100. FEECO International, Inc. https://feeco.com/. Accessed 29 Apr 2021

  101. PK fertiliser phosphate and potash fertiliser — fibrophos fertilisers. https://www.fibrophos.co.uk/. Accessed 29 Apr 2021

  102. Cooperl - 360° pig chain profitability. https://www.cooperl.co.uk/. Accessed 28 Apr 2021

  103. Géotexia | Méné. https://geotexia.wordpress.com/. Accessed 26 Apr 2021

  104. Italpollina. https://www.italpollina.com/. Accessed 28 Apr 2021

  105. Fertikal is a leading producer of organic and organo-mineral fertilizers: Fertikal. https://www.fertikal.be/en/. Accessed 29 Apr 2021

  106. KalFos. https://kalfos.co.uk/. Accessed 29 Apr 2021

  107. Gu C, Gates BA, Margenot AJ (2020) Phosphate recycled as struvite immobilizes bioaccessible soil lead while minimizing environmental risk. J Clean Prod 276:122635. https://doi.org/10.1016/j.jclepro.2020.122635

    Article  Google Scholar 

  108. Hertzberger AJ, Cusick RD, Margenot AJ (2020) A review and meta-analysis of the agricultural potential of struvite as a phosphorus fertilizer. Soil Sci Soc Am J 84:653–671. https://doi.org/10.1002/saj2.20065

    Article  Google Scholar 

  109. Chrispim MC, Scholz M, Nolasco MA (2019) Phosphorus recovery from municipal wastewater treatment: critical review of challenges and opportunities for developing countries. Journal of Environmental Management 248

  110. Li B, Huang HM, Boiarkina I, et al (2019) Phosphorus recovery through struvite crystallisation: recent developments in the understanding of operational factors. Journal of Environmental Management 248

  111. Mukherjee D, Ray R, Biswas N (2020) Mining phosphate from wastewater: treatment and reuse. In: Green energy and technology. Springer Verlag, pp 67–81

  112. Perera MK, Englehardt JD, Dvorak AC (2019) Technologies for recovering nutrients from wastewater: a critical review. Environ Eng Sci 36:511–529. https://doi.org/10.1089/ees.2018.0436

    Article  Google Scholar 

  113. Weeks JJ, Hettiarachchi GM (2019) A review of the latest in phosphorus fertilizer technology: possibilities and pragmatism. J Environ Qual 48:1300–1313. https://doi.org/10.2134/jeq2019.02.0067

    Article  MATH  Google Scholar 

  114. Garske B, Stubenrauch J, Ekardt F (2020) Sustainable phosphorus management in European agricultural and environmental law. Review of European, Comparative & International Environmental Law 29:107–117. https://doi.org/10.1111/reel.12318

    Article  MATH  Google Scholar 

  115. Rosemarin A, Macura B, Carolus J et al (2020) Circular nutrient solutions for agriculture and wastewater—a review of technologies and practices. Current Opinion in Environmental Sustainability 45:78–91

    Article  MATH  Google Scholar 

  116. Lystek: leaders in biosolids and organics management | Lystek | Leaders in Biosolids & Organics Management. https://lystek.com/. Accessed 29 Apr 2021

  117. US7947104B2 — process for treating sludge and manufacturing bioorganically-augmented high nitrogen-containing inorganic fertilizer — Google Patents. https://patents.google.com/patent/US7947104B2/en. Accessed 28 Apr 2021

  118. US20050067348A1 — method and system for treating sludge using recycle — Google Patents. https://patents.google.com/patent/US20050067348. Accessed 29 Apr 2021

  119. Anuvia Plant Nutrients (2019) The innovative way to cultivate strong, healthy crops — SymTRX technical bulletin. In A Uniquely Natural Way.

  120. US7662206B2 — organic containing sludge to fertilizer alkaline conversion process — Google Patents. https://patents.google.com/patent/US7662206B2/en. Accessed 26 Apr 2021

  121. US20150027180A1 — systems and methods for converting and processing organic sludges for multi-nutrient single accreted granule enhanced efficiency fertilizer production — Google Patents. https://patents.google.com/patent/US20150027180A1/en. Accessed 28 Apr 2021

  122. US9758401B2 — digestion of biosolids in wastewater — Google Patents. https://patents.google.com/patent/US9758401B2/en. Accessed 26 Apr 2021

  123. Neutralizer | BCR solid solutions. https://bcrinc.com/neutralizer/. Accessed 28 Apr 2021

  124. US8617285B2 — nutrient enhanced biosolids pellets — Google Patents. https://patents.google.com/patent/US8617285. Accessed 29 Apr 2021

  125. Rosemarin A, Macura B, Carolus J et al (2020) Circular nutrient solutions for agriculture and wastewater — a review of technologies and practices. Current Opinion in Environmental Sustainability 45:78–91

    Article  MATH  Google Scholar 

  126. Géotexia | Méné. https://geotexia.wordpress.com/. Accessed 28 Apr 2021

  127. Fertikal is a leading producer of organic and organo-mineral fertilizers : Fertikal. https://www.fertikal.be/en/. Accessed 29 Apr 2021

  128. Garske B, Stubenrauch J, Ekardt F (2020) Sustainable phosphorus management in European agricultural and environmental law. Review of European, Comparative and International Environmental Law 29:107–117. https://doi.org/10.1111/reel.12318

    Article  MATH  Google Scholar 

  129. Ohtake H, Tsuneda S (2018) Phosphorus recovery and recycling. Springer, Singapore

    MATH  Google Scholar 

  130. Fatone F, Pikaar I (2019) 3rd IWA Resource Recovery Conference

  131. Soltys LM, Mironyuk IF, Tatarchuk TR, Tsinurchyn VI (2020) Zeolite-based composites as slow release fertilizers (review). Physics and Chemistry of Solid State 21:89–104. https://doi.org/10.15330/pcss.21.1.89-104

  132. Sundram S, Angel LPL, Sirajuddin SA (2019) Integrated balanced fertiliser management in soil health rejuvenation for a sustainable oil palm cultivation: a review. Journal of Oil Palm Research 31:348–363. https://doi.org/10.21894/jopr.2019.0045

  133. Zrig A, Ferreira JFS, Hamouda F et al (2019) The impact of foliar fertilizers on growth and biochemical responses of Thymus vulgaris to salinity stress. Arid Land Res Manag 33:297–320. https://doi.org/10.1080/15324982.2018.1551817

    Article  Google Scholar 

Download references

Acknowledgements

This article was prepared under the ERA-NET 2021 Joint Call on Circularity project ID:26, entitled: “Solutions for GHGs emissions mitigation for the mixed farming systems across different European climates.” Project is co-financed by the National Centre for Research and Development.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Katarzyna Chojnacka, Katarzyna Gorazda, Anna Witek-Krowiak; writing—original draft: Katarzyna Chojnacka, Katarzyna Mikula, Dawid Skrzypczak, Grzegorz Izydorczyk, Katarzyna Gorazda, Joanna Kulczycka, Halyna Kominko, Anna Witek-Krowiak; writing—review and editing: Katarzyna Chojnacka, Katarzyna Gorazda, Anna Witek-Krowiak, Konstantinos Moustakas; funding acquisition: Katarzyna Chojnacka; supervision: Katarzyna Chojnacka, Katarzyna Gorazda, Anna Witek-Krowiak, Konstantinos Moustakas.

Corresponding author

Correspondence to Katarzyna Mikula.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chojnacka, K., Mikula, K., Skrzypczak, D. et al. Practical aspects of biowastes conversion to fertilizers. Biomass Conv. Bioref. 14, 1515–1533 (2024). https://doi.org/10.1007/s13399-022-02477-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02477-2

Keywords

Navigation