Skip to main content

Advertisement

Log in

Enhancement of energy and combustion properties of hydrochar via citric acid catalysed secondary char production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present study investigates the use of hydrothermal carbonization (HTC) to upgrade agro-waste into solid biofuels and the use of citric acid (CA) as a catalyst capable of enhancing energy properties of hydrochars. HTC of pineapple waste (PA) was carried out at 180, 220, and 250 °C at a fixed 1-h residence time with and without the addition of CA. Contrarily to the current understanding with regard to the use of an acid catalyst during HTC, CA addition shows to appreciably increase hydrochar mass yields with HTC temperature, while increasing their degree of coalification and carbon retention. PA hydrochars produced with the addition of CA exhibit higher heating values (HHV) up to 29.7 MJ/kg dry basis (db), low residual ash (between 0.53 and 0.75 wt% db), and better combustion properties when compared to those of hydrochars obtained without CA addition. We show that the increase in mass yields and energy properties observed for hydrochars is due to CA catalytic effect toward back-polymerization of organics in the liquid phase to form secondary char. Secondary char formation and its role in influencing the hydrochar properties as solid biofuels are demonstrated by scanning electron microscopy, proximate, elemental analysis, and combustion reactivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad T, Zhang D (2020) A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep 6:1973–1991. https://doi.org/10.1016/j.egyr.2020.07.020

    Article  Google Scholar 

  2. Erlach B, Harder B, Tsatsaronis G (2012) Combined hydrothermal carbonization and gasification of biomass with carbon capture. Energy 45:329–338. https://doi.org/10.1016/j.energy.2012.01.057

  3. Al-Juboori O, Sher F, Khalid U et al (2020) Electrochemical production of sustainable hydrocarbon fuels from CO2 co-electrolysis in eutectic molten melts. ACS Sustain Chem Eng 8:12877–12890. https://doi.org/10.1021/acssuschemeng.0c03314

    Article  Google Scholar 

  4. Al-Juboori O, Sher F, Hazafa A et al (2020) The effect of variable operating parameters for hydrocarbon fuel formation from CO2 by molten salts electrolysis. J CO2 Util 40:101193. https://doi.org/10.1016/j.jcou.2020.101193

    Article  Google Scholar 

  5. Sarp S, Gonzalez Hernandez S, Chen C, Sheehan SW (2021) Alcohol production from carbon dioxide: methanol as a fuel and chemical feedstock. Joule 5:59–76. https://doi.org/10.1016/j.joule.2020.11.005

    Article  Google Scholar 

  6. Sher F, Yaqoob A, Saeed F et al (2020) Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation. Energy 209. https://doi.org/10.1016/j.energy.2020.118444

  7. Wilk M, Magdziarz A, Kalemba I (2015) Characterisation of renewable fuels’ torrefaction process with different instrumental techniques. Energy 87:259–269. https://doi.org/10.1016/j.energy.2015.04.073

  8. Van Der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35:3748–3762. https://doi.org/10.1016/j.biombioe.2011.06.023

    Article  Google Scholar 

  9. Volpe M, D ’anna C, Messineo S et al (2014) Sustainable production of bio-combustibles from pyrolysis of agro-industrial wastes. Sustainability 6:7866–7882. https://doi.org/10.3390/su6117866

    Article  Google Scholar 

  10. Lin J, Mariuzza D, Volpe M et al (2021) Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Bioresour Technol 328:124765. https://doi.org/10.1016/j.biortech.2021.124765

    Article  Google Scholar 

  11. Volpe R, Messineo S, Volpe M, Messineo A (2016) Catalytic effect of char for tar cracking in pyrolysis of citrus wastes, design of a novel experimental set up and first results. Chem Eng Trans 50:181–186. https://doi.org/10.3303/CET1650031

  12. Meng A, Chen S, Long Y et al (2015) Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Manag 46:247–256. https://doi.org/10.1016/j.wasman.2015.08.025

    Article  Google Scholar 

  13. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31:3458–3470. https://doi.org/10.1016/j.energy.2006.03.008

    Article  Google Scholar 

  14. Zhu X, Zhao L, Fu F et al (2019) Pyrolysis of pre-dried dewatered sewage sludge under different heating rates: characteristics and kinetics study. Fuel 255:115591. https://doi.org/10.1016/j.fuel.2019.05.174

    Article  Google Scholar 

  15. Yang Y, Heaven S, Venetsaneas N et al (2018) Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): characterisation of products and screening of the aqueous liquid product for anaerobic digestion. Appl Energy 213:158–168. https://doi.org/10.1016/j.apenergy.2018.01.018

    Article  Google Scholar 

  16. Naqvi SR, Imtiaz Ali SN, Taqvi SAA et al (2020) Assessment of agro-industrial residues for bioenergy potential by investigating thermo-kinetic behavior in a slow pyrolysis processitle. Fuel 278:118259. https://doi.org/10.1016/j.fuel.2020.118259

    Article  Google Scholar 

  17. Rasapoor M, Young B, Brar R et al (2020) Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel 261:116497. https://doi.org/10.1016/j.fuel.2019.116497

    Article  Google Scholar 

  18. Barr MR, Volpe R, Kandiyoti R (2021) Liquid biofuels from food crops in transportation–a balance sheet of outcomes. Chem Eng Sci X 10:100090. https://doi.org/10.1016/j.cesx.2021.100090

    Article  Google Scholar 

  19. Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17:515–521. https://doi.org/10.1016/j.cbpa.2013.05.004

    Article  Google Scholar 

  20. Libra JA, Ro KS, Kammann C et al (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81

    Article  Google Scholar 

  21. Titirici MM (2013) Sustainable carbon materials from hydrothermal processes, 1st edn. Wiley

    Book  Google Scholar 

  22. Titirici M-M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789. https://doi.org/10.1039/b616045j

    Article  Google Scholar 

  23. Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25:1802–1810. https://doi.org/10.1021/ef101745n

    Article  Google Scholar 

  24. Funke A, Reebs F, Kruse A (2013) Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Process Technol 115:261–269. https://doi.org/10.1016/j.fuproc.2013.04.020

    Article  Google Scholar 

  25. Volpe M, Messineo A, Mäkelä M et al (2020) Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Process Technol 206:106456. https://doi.org/10.1016/j.fuproc.2020.106456

    Article  Google Scholar 

  26. Heidari M, Salaudeen S, Dutta A, Acharya B (2018) Effects of process water recycling and particle sizes on hydrothermal carbonization of biomass. Energy Fuels. 32:11576–11586. https://doi.org/10.1021/acs.energyfuels.8b02684

    Article  Google Scholar 

  27. Maniscalco MP, Volpe M, Messineo A (2020) Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies 13(16):4098. https://doi.org/10.3390/en13164098

  28. Kruse A, Zevaco TA (2018) Properties of hydrochar as function of feedstock, reaction conditions and post-treatment. Energies 11:1–12. https://doi.org/10.3390/en11030674

    Article  Google Scholar 

  29. Knežević D, Van Swaaij W, Kersten S (2010) Hydrothermal conversion of biomass. II. conversion of wood, pyrolysis oil, and glucose in hot compressed water. Ind Eng Chem Res. 49:104–112. https://doi.org/10.1021/ie900964u

    Article  Google Scholar 

  30. Saha N, Saba A, Reza MT (2018) Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood. J Anal Appl Pyrolysis 137:138–145. https://doi.org/10.1016/j.jaap.2018.11.018

    Article  Google Scholar 

  31. Volpe M, Wüst D, Merzari F et al (2018) One stage olive mill waste streams valorisation via hydrothermal carbonisation. Waste Manag 80:224–234. https://doi.org/10.1016/j.wasman.2018.09.021

    Article  Google Scholar 

  32. Sabio E, Álvarez-Murillo A, Román S, Ledesma B (2016) Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Manag 47:122–132. https://doi.org/10.1016/j.wasman.2015.04.016

    Article  Google Scholar 

  33. Benavente V, Calabuig E, Fullana A (2015) Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J Anal Appl Pyrolysis 113:89–98. https://doi.org/10.1016/j.jaap.2014.11.004

    Article  Google Scholar 

  34. Mäkelä M, Fullana A, Yoshikawa K (2016) Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock. Energy Convers Manag. 121:402–408. https://doi.org/10.1016/j.enconman.2016.05.016

    Article  Google Scholar 

  35. Pauline AL, Joseph K (2020) Hydrothermal carbonization of organic wastes to carbonaceous solid fuel—a review of mechanisms and process parameters. Fuel 279:118472. https://doi.org/10.1016/j.fuel.2020.118472

    Article  Google Scholar 

  36. Mäkelä M, Wai C, Broström M, Yoshikawa K (2017) Hydrothermal treatment of grape marc for solid fuel applications. Energy Convers Manag 145:371–377. https://doi.org/10.1016/j.enconman.2017.05.015

    Article  Google Scholar 

  37. Volpe M, Goldfarb JL, Fiori L (2018) Hydrothermal carbonization of Opuntia ficus indica cladodes: role of process parameters on hydrochar properties. Bioresour Technol 247:310–318. https://doi.org/10.1016/j.biortech.2017.09.072

    Article  Google Scholar 

  38. Saha N, Saba A, Saha P et al (2019) Hydrothermal carbonization of various paper mill sludges: an observation of solid fuel properties. Energies 12(5):858. https://doi.org/10.3390/en12050858

  39. Mäkelä M, Benavente V, Fullana A (2016) Hydrothermal carbonization of industrial mixed sludge from a pulp and paper mill. Bioresour Technol 200:444–450. https://doi.org/10.1016/j.biortech.2015.10.062

    Article  Google Scholar 

  40. Wikberg H, Ohra-aho T, Honkanen M et al (2016) Hydrothermal carbonization of pulp mill streams. Bioresour Technol 212:236–244. https://doi.org/10.1016/j.biortech.2016.04.061

    Article  Google Scholar 

  41. Ekpo U, Ross AB, Camargo-Valero MA, Fletcher LA (2016) Influence of pH on hydrothermal treatment of swine manure: impact on extraction of nitrogen and phosphorus in process water. Bioresour Technol 214:637–644. https://doi.org/10.1016/j.biortech.2016.05.012

    Article  Google Scholar 

  42. Gascó G, Paz-Ferreiro J, Álvarez ML et al (2018) Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manag 79:395–403. https://doi.org/10.1016/j.wasman.2018.08.015

    Article  Google Scholar 

  43. Wang S, Ma F, Ma W et al (2019) Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system. Water 11:133. https://doi.org/10.3390/w11010133

    Article  Google Scholar 

  44. Zhao P, Shen Y, Ge S et al (2014) Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl Energy 131:345–367. https://doi.org/10.1016/j.apenergy.2014.06.038

    Article  Google Scholar 

  45. Volpe M, Fiori L, Merzari F et al (2020) Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery. Chem Eng Trans 80:199–204. https://doi.org/10.3303/CET2080034

    Article  Google Scholar 

  46. Brookman H, Gievers F, Zelinski V et al (2018) Influence of hydrothermal carbonization on composition, formation and elimination of biphenyls, dioxins and furans in sewage sludge. Energies 11:1–13. https://doi.org/10.3390/en11061582

    Article  Google Scholar 

  47. Pawlak-Kruczek H, Sieradzka M, Mlonka-Mędrala A et al (2019) Structural and energetic properties of hydrochars obtained from agricultural and municipal solid waste digestates. In: ECOS 2019—Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems

  48. Cao Z, Jung D, Olszewski MP et al (2019) Hydrothermal carbonization of biogas digestate: effect of digestate origin and process conditions. Waste Manag 100:138–150. https://doi.org/10.1016/j.wasman.2019.09.009

  49. Reza MT, Mumme J, Ebert A (2015) Characterization of hydrochar obtained from hydrothermal carbonization of wheat straw digestate. Biomass Convers Biorefinery 5:425–435. https://doi.org/10.1007/s13399-015-0163-9

    Article  Google Scholar 

  50. Suwelack KU, Wüst D, Fleischmann P, Kruse A (2016) Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate by severity parameter. Biomass Convers Biorefinery 6:151–160. https://doi.org/10.1007/s13399-015-0172-8

    Article  Google Scholar 

  51. Lucian M, Volpe M, Gao L et al (2018) Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233:257–268. https://doi.org/10.1016/j.fuel.2018.06.060

    Article  Google Scholar 

  52. Merzari F, Lucian M, Volpe M et al (2018) Hydrothermal carbonization of biomass: Design of a bench-scale reactor for evaluating the heat of reaction. Chem Eng Trans 65:43–48. https://doi.org/10.3303/CET1865008

  53. Lucian M, Volpe M, Merzari F et al (2020) Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresour Technol 314:123734. https://doi.org/10.1016/j.biortech.2020.123734

    Article  Google Scholar 

  54. Luz FC, Volpe M, Fiori L et al (2018) Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process. Bioresour Technol 256:102–109. https://doi.org/10.1016/j.biortech.2018.02.021

    Article  Google Scholar 

  55. Miliotti E, Casini D, Rosi L et al (2020) Lab-scale pyrolysis and hydrothermal carbonization of biomass digestate: characterization of solid products and compliance with biochar standards. Biomass Bioenerg 139:105593. https://doi.org/10.1016/j.biombioe.2020.105593

    Article  Google Scholar 

  56. Zhuang X, Song Y, Zhan H et al (2020) Gasification performance of biowaste-derived hydrochar: The properties of products and the conversion processes. Fuel 260:116320. https://doi.org/10.1016/j.fuel.2019.116320

  57. Ulbrich M, Preßl D, Fendt S et al (2017) Impact of HTC reaction conditions on the hydrochar properties and CO2 gasification properties of spent grains. Fuel Process Technol 167:663–669. https://doi.org/10.1016/j.fuproc.2017.08.010

    Article  Google Scholar 

  58. Salaudeen S, Acharya B, Dutta A (2021) Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes. Renew Energy 171:582–591. https://doi.org/10.1016/j.renene.2021.02.115

    Article  Google Scholar 

  59. Xu X, Tu R, Sun Y et al (2019) The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk. Bioresour Technol 271:427–438. https://doi.org/10.1016/j.biortech.2018.09.066

    Article  Google Scholar 

  60. Wang W, Wen C, Liu T et al (2020) Emission reduction of PM10 via pretreatment combining water washing and carbonisation during rice straw combustion: Focus on the effects of pretreatment and combustion conditions. Fuel Process Technol 205:106412. https://doi.org/10.1016/j.fuproc.2020.106412

    Article  Google Scholar 

  61. Saha N, Xin D, Chiu PC, Toufiq Reza M (2019) Effect of pyrolysis temperature on acidic oxygen-containing functional groups and electron storage capacities of pyrolyzed hydrochars. ACS Sustain Chem Eng 7:8387–8396. https://doi.org/10.1021/acssuschemeng.9b00024

    Article  Google Scholar 

  62. Olszewski MP, Nicolae SA, Arauzo PJ et al (2020) Wet and dry? Influence of hydrothermal carbonization on the pyrolysis of spent grains. J Clean Prod 260:121101. https://doi.org/10.1016/j.jclepro.2020.121101

  63. Hitzl M, Corma A, Pomares F, Renz M (2015) The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catal Today 257:154–159. https://doi.org/10.1016/j.cattod.2014.09.024

    Article  Google Scholar 

  64. Lucian M, Volpe M, Gao L et al (2018) Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233:257–268

    Article  Google Scholar 

  65. FAO (2019) Land & Water Database. In: L. Water Database. http://www.fao.org/land-water/databases-and-software/crop-information/pineapple/en/. Accessed 10 Apr 2021

  66. Lama A, Prava J, Tawata S (2005) Utilization of Pineapple Waste: a Review. J Food Sci Technol Nepal 6:10–18

    Google Scholar 

  67. Vasconcelos TS, Thomaz MC, Castelini FR et al (2020) Evaluation of pineapple byproduct at increasing levels in heavy finishing pigs feeding. Anim Feed Sci Technol 269:114664. https://doi.org/10.1016/j.anifeedsci.2020.114664

    Article  Google Scholar 

  68. Campos DA, Ribeiro TB, Teixeira JA et al (2020) Integral valorization of pineapple (Ananas comosus L.) By-products through a green chemistry approach towards Added Value Ingredients. Foods 9:60. https://doi.org/10.3390/foods9010060

  69. Chen A, Guan YJ, Bustamante M et al (2020) Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica. Biomass Bioenerg 141:105675. https://doi.org/10.1016/j.biombioe.2020.105675

    Article  Google Scholar 

  70. Onuoha EM, Ekpo IA, Anukwa FA, Nwagu KE (2020) Microbial stimulating potential of Pineapple peel (Ananas comosus) and Coconut (Cocos nucifera) husk char in crude-oil polluted soil. Int J Environ Agric Biotechnol 5:582–593. https://doi.org/10.22161/ijeab.53.10

    Article  Google Scholar 

  71. Volpe M, Fiori L (2017) From olive waste to solid biofuel through hydrothermal carbonisation: the role of temperature and solid load on secondary char formation and hydrochar energy properties. J Anal Appl Pyrolysis 124:63–72. https://doi.org/10.1016/j.jaap.2017.02.022

    Article  Google Scholar 

  72. Evcil T, Simsir H, Ucar S et al (2020) Hydrothermal carbonization of lignocellulosic biomass and effects of combined Lewis and Brønsted acid catalysts. Fuel 279:118458. https://doi.org/10.1016/j.fuel.2020.118458

    Article  Google Scholar 

  73. Simsir H, Eltugral N, Karagoz S (2019) Effects of acidic and alkaline metal triflates on the hydrothermal carbonization of glucose and cellulose. Energy Fuels 33:7473–7479. https://doi.org/10.1021/acs.energyfuels.9b01750

    Article  Google Scholar 

  74. Zhang S, Sheng K, Yan W et al (2021) Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization. Chemosphere 263:128093. https://doi.org/10.1016/j.chemosphere.2020.128093

    Article  Google Scholar 

  75. Rong H, Wang T, Zhou M et al (2017) Combustion characteristics and slagging during co-combustion of rice husk and sewage sludge blends. Energies 10:438. https://doi.org/10.3390/en10040438

    Article  Google Scholar 

  76. Saha N, Volpe M, Fiori L et al (2020) Cationic dye adsorption on hydrochars of winery and citrus juice industries residues: performance, mechanism, and thermodynamics. Energies 13:1–16. https://doi.org/10.3390/en13184686

    Article  Google Scholar 

  77. Reza MT, Rottler E, Herklotz L, Wirth B (2015) Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresour Technol 182:336–344. https://doi.org/10.1016/j.biortech.2015.02.024

  78. Dai L, Yang B, Li H et al (2017) A synergistic combination of nutrient reclamation from manure and resultant hydrochar upgradation by acid-supported hydrothermal carbonization. Bioresour Technol 243:860–866. https://doi.org/10.1016/j.biortech.2017.07.016

    Article  Google Scholar 

  79. Merzari F, Goldfarb J, Andreottola G et al (2020) Hydrothermal carbonization as a strategy for sewage sludge management: influence of process withdrawal point on hydrochar properties. Energies 13:2890. https://doi.org/10.3390/en13112890

    Article  Google Scholar 

  80. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefinery 4:160–177. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  81. Smith AM, Singh S, Ross AB (2016) Fate of inorganic material during hydrothermal carbonisation of biomass: influence of feedstock on combustion behaviour of hydrochar. Fuel 169:135–145. https://doi.org/10.1016/j.fuel.2015.12.006

    Article  Google Scholar 

  82. Lu L, Namioka T, Yoshikawa K (2011) Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes. Appl Energy 88:3659–3664. https://doi.org/10.1016/j.apenergy.2011.04.022

    Article  Google Scholar 

  83. Liu Z, Quek A, Hoekman SK, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949. https://doi.org/10.1016/j.fuel.2012.07.069

    Article  Google Scholar 

  84. Wilk M, Magdziarz A, Kalemba-Rec I, Szymańska-Chargot M (2020) Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia. Energy 202:117717. https://doi.org/10.1016/j.energy.2020.117717

    Article  Google Scholar 

  85. Volpe M, Fiori L, Volpe R, Messineo A (2016) Upgrading of olive tree trimmings residue as biofuel by hydrothermal carbonization and torrefaction: a comparative study. Chem Eng Trans 50:13–18. https://doi.org/10.3303/CET1650003

    Article  Google Scholar 

  86. Benavente V, Fullana A (2021) Low-cost additives to improve the fusion behaviour of hydrochar ash. Fuel 285:119009. https://doi.org/10.1016/j.fuel.2020.119009

    Article  Google Scholar 

  87. Jenkins B, Baxter L, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. https://doi.org/10.1016/S0378-3820(97)00059-3

    Article  Google Scholar 

  88. Miles TR, Miles TR, Baxter LL et al (1996) Boiler deposits from firing biomass fuels. Biomass Bioenerg 10:125–138. https://doi.org/10.1016/0961-9534(95)00067-4

    Article  Google Scholar 

  89. Reza M, Lynam JG, Helal Uddin M, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenerg 49:86–94. https://doi.org/10.1016/j.biombioe.2012.12.004

    Article  Google Scholar 

  90. Liu Z, Quek A, Kent Hoekman S, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949. https://doi.org/10.1016/j.fuel.2012.07.069

    Article  Google Scholar 

  91. Qiao Y, Zhang L, Binner E et al (2010) An investigation of the causes of the difference in coal particle ignition temperature between combustion in air and in O2/CO2. Fuel 89:3381–3387. https://doi.org/10.1016/j.fuel.2010.05.037

    Article  Google Scholar 

  92. Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90:21–50. https://doi.org/10.1016/j.fuproc.2008.07.012

    Article  Google Scholar 

  93. Saba A, Saha P, Reza MT (2017) Co-hydrothermal carbonization of coal-biomass blend: Influence of temperature on solid fuel properties. Fuel Process Technol 167:711–720. https://doi.org/10.1016/j.fuproc.2017.08.016

    Article  Google Scholar 

  94. Titirici MM, White R, Falco C, Sevilla M (2012) Black perspectives for a green future : hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822. https://doi.org/10.1039/c2ee21166a

    Article  Google Scholar 

  95. Falco C, Baccile N, Titirici M-M (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13:3273. https://doi.org/10.1039/c1gc15742f

    Article  Google Scholar 

Download references

Funding

The author Maurizio Volpe received financial support from PON AIM Action Plan on the frame of PON R&I 2014/2020.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, MV, AM, and TR; investigation, MV, FCL, NS, and MCM; validation and data curation, MV and RV; writing, original draft preparation, MV and NS; review and editing, MV, RV, NS, and AM; supervision, AM and TR; project administration, AM and TR; funding acquisition, AM, RV, and TR. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Maurizio Volpe.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpe, M., Luz, F.C., Saha, N. et al. Enhancement of energy and combustion properties of hydrochar via citric acid catalysed secondary char production. Biomass Conv. Bioref. 13, 10527–10538 (2023). https://doi.org/10.1007/s13399-021-01816-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01816-z

Keywords

Navigation