Skip to main content
Log in

Optimal operational variables of phenolic compound extractions from pistachio industry waste (Pistacia vera var. Kerman) using the response surface method

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

San Juan is a leading pistachio producer in Argentina. Pistachio industrial processing generates biowastes that can be reused. These biowastes can be used as a precursor of bioactive components of interest as the phenolic compounds. Therefore, the aim of this work is to optimize the conditions of stirring extraction (SE) and ultrasonic-assisted extraction (UAE) of phenolic compounds (PC) using response surface methodology (RSM). A central composite design (CCD) was used to analyze the effects of the independent variables: ethanol:water ratio and extraction time. The optimal conditions for extraction of phenolic compounds from pistachio industry biowaste through UAE method were a volumetric ratio of ethanol:water ratio about 0.5 and an extraction time between 0.7 and 0.94 h. For SE, the optimal conditions were a volumetric ratio of ethanol:water ratio about 0.6 and an extraction time between 2 and 2.7 h. Longer period of extraction, for both extractions UAE and SE, produces degradation reactions and therefore a radical capture activity loss. SE had optimal values of volumetric proportion solvents comparable with those corresponding to UAE. But SE requires more time to produce breaks in the cell, and dissolution and diffusion of bioactive compounds in the extracts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caldas TW, Mazza KEL, Teles ASC, Mattos GN, Iraidy A, Brígida S et al (2018) Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Indust Crops Prod 111(May 2017):86–91. https://doi.org/10.1016/j.indcrop.2017.10.012

    Article  Google Scholar 

  2. Chandrasekara A, Shahidi F (2012) Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J Funct Foods 4(1):226–237. https://doi.org/10.1016/j.jff.2011.11.001

    Article  Google Scholar 

  3. Chandrasekara A, Naczk M, Shahidi F (2012) Effect of processing on the antioxidant activity of millet grains. Food Chem 133(1):1–9. https://doi.org/10.1016/j.foodchem.2011.09.043

    Article  Google Scholar 

  4. Chang C, Yang M, Wen H, Chern J (2002) Estimation of total flavonoid content in propolis by colorimetric methods. J Food Drug Anal 10(3):7802 Retrieved from https://pdfs.semanticscholar.org/b3de/c5e57477b0489135bd5b43a27f9b7cee7d31.pdf

    Google Scholar 

  5. Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9(1):85–91. https://doi.org/10.1016/j.ifset.2007.06.002

    Article  Google Scholar 

  6. Fabani MP, Luna L, Baroni MV, Monferran MV, Ighani M, Tapia A, Wunderlin DA, Feresin GE (2013) Pistachio (Pistacia vera var Kerman) from Argentinean cultivars. A natural product with potential to improve human health. J Funct Foods 5(3):1347–1356. https://doi.org/10.1016/j.jff.2013.05.002

    Article  Google Scholar 

  7. Galvan d’Alessandro L, Kriaa K, Nikov I, Dimitrov K (2012) Ultrasound assisted extraction of polyphenols from black chokeberry. Sep Purif Technol 93:42–47. https://doi.org/10.1016/j.seppur.2012.03.024

    Article  Google Scholar 

  8. Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernández-Gutiérrez A (2010) Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15(12):8813–8826. https://doi.org/10.3390/molecules15128813

    Article  Google Scholar 

  9. Giovinazzo G, Grieco F (2015) Functional properties of grape and wine polyphenols. Plant Foods Hum Nutr 70(4):454–462. https://doi.org/10.1007/s11130-015-0518-1

    Article  Google Scholar 

  10. Granato D, de Araújo Calado VÔM, Jarvis B (2014) Observations on the use of statistical methods in food science and technology. Food Res Int 55:137–149. https://doi.org/10.1016/j.foodres.2013.10.024

    Article  Google Scholar 

  11. Granato D, de Magalhães Carrapeiro M, Fogliano V, van Ruth SM (2016) Effects of geographical origin, varietal and farming system on the chemical composition and functional properties of purple grape juices: a review. Trends Food Sci Technol 52:31–48. https://doi.org/10.1016/j.tifs.2016.03.013

    Article  Google Scholar 

  12. Haas IC d S, Toaldo IM, Burin VM, Bordignon-Luiz MT (2018) Extraction optimization for polyphenolic profiling and bioactive enrichment of extractives of non-pomace residue from grape processing. Ind Crop Prod 112:593–601. https://doi.org/10.1016/j.indcrop.2017.12.058

    Article  Google Scholar 

  13. Heldrich K (1990) Official methods of analysis of the association of official analytical chemists. Association of Official Chemists, Arlington

    Google Scholar 

  14. Hogervorst JC, Miljić U, Puškaš V (2017) Extraction of bioactive compounds from grape processing by-products (C. M. B. T.-H. of G. P. B.-P. Galanakis, ed.). https://doi.org/10.1016/B978-0-12-809870-7.00005-3

  15. Humes, E. (2013). Garbology: Our Dirty Love Affair with Trash. Retrieved from https://books.google.com.ar/books?id=7c6LDQAAQBAJ

  16. Il Rhee J, Diaz Ricci JC, Bode J, Schügerl K (1994) Metabolic enhancement due to plasmid maintenance. Biotechnol Lett 16(9):881–884. https://doi.org/10.1007/BF00128618

    Article  Google Scholar 

  17. Kapoor N, Narain U, Misra K (2007) Bio-active conjugates of curcumin having ester, peptide, thiol and disulfide links. J Sci Ind Res 66:647–650

    Google Scholar 

  18. Karnopp AR, Margraf T, Maciel LG, Santos JS, Granato D (2017) Chemical composition, nutritional and in vitro functional properties of by-products from the Brazilian organic grape juice industry. Int Food Res J 24(1):207–214

    Google Scholar 

  19. Milella RA, Basile T, Alba V, Gasparro M, Giannandrea MA, Debiase G, Genghi R, Antonacci D (2019) Optimized ultrasonic-assisted extraction of phenolic antioxidants from grape (Vitis vinifera L.) skin using response surface methodology. J Food Sci Technol 56(10):4417–4428. https://doi.org/10.1007/s13197-019-03946-9

    Article  Google Scholar 

  20. Niyonizigiye I, Nkurunziza D, Ngabire D, Gitachew AT, Chun BS, Kim GD (2020) Characterization and in vitro cytotoxicity of phytochemicals from Aspilia africana obtained using green extraction techniques. S Afr J Bot 128:231–238. https://doi.org/10.1016/j.sajb.2019.11.013

    Article  Google Scholar 

  21. Özbek HN, Halahlih F, Göğüş F, Koçak Yanık D, Azaizeh H (2018) Pistachio (Pistacia vera L.) hull as a potential source of phenolic compounds: evaluation of ethanol–water binary solvent extraction on antioxidant activity and phenolic content of pistachio hull extracts. Waste Biomass Valoriz 0(0)0 https://doi.org/10.1007/s12649-018-0512-6

  22. Parvathy KS, Negi PS, Srinivas P (2009) Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chem 115(1):265–271. https://doi.org/10.1016/j.foodchem.2008.12.036

    Article  Google Scholar 

  23. Pintać D, Majkić T, Torović L, Orčić D, Beara I, Simin N, Mimica-Dukić N, Lesjak M (2018) Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind Crop Prod 111:379–390. https://doi.org/10.1016/j.indcrop.2017.10.038

    Article  Google Scholar 

  24. Rajaei B, Barzegar M, Hamidi Z, Sahari MA (2010) Optimization of extraction conditions of phenolic compounds from pistachio (Pistachia vera) green hull through response surface method. J Agr Sci Tech 12:223–231

    Google Scholar 

  25. Rasines-Perea Z, Teissedre PL (2017) Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules 22(1):1–19. https://doi.org/10.3390/molecules22010068

    Article  Google Scholar 

  26. Santos-Buelga (2006) Extraction and isolation of phenolic compounds. Chapter 17. In Natural products isolation (Vol. 864, pp. 1–25). https://doi.org/10.1007/978-1-61779-624-1

  27. SAS Institute (2018) JMP 14 Design of experiments guide. Retrieved from https://books.google.com.ar/books?id=ORVSDwAAQBAJ

  28. Sette P, Fernandez A, Soria J, Rodriguez R, Salvatori D, Mazza G (2020) Integral valorization of fruit waste from wine and cider industries. J Clean Prod 242:118486. https://doi.org/10.1016/j.jclepro.2019.118486

    Article  Google Scholar 

  29. Singh CK, Siddiqui IA, El-Abd S, Mukhtar H, Ahmad N (2016) Combination chemoprevention with grape antioxidants. Mol Nutr Food Res 60(6):1406–1415. https://doi.org/10.1002/mnfr.201500945

    Article  Google Scholar 

  30. Somayajula A, Asaithambi P, Susree M, Matheswaran M (2012) Sonoelectrochemical oxidation for decolorization of Reactive Red 195. Ultrason Sonochem 19(4):803–811. https://doi.org/10.1016/j.ultsonch.2011.12.019

    Article  Google Scholar 

  31. Sun C, Wu Z, Wang Z, Zhang H (2015) Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. (September) https://doi.org/10.1155/2015/595393

  32. Wang T, He F, Chen G (2014) Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: a concise review. J Funct Foods 7:101–111. https://doi.org/10.1016/j.jff.2014.01.033

    Article  Google Scholar 

  33. Zhang Z, Zheng H (2009) Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. J Hazard Mater 172(2–3):1388–1393. https://doi.org/10.1016/j.jhazmat.2009.07.146

    Article  Google Scholar 

  34. Zhou J, Zheng X, Yang Q, Liang Z, Li D, Yang X, Xu J (2013) Optimization of ultrasonic-assisted extraction and radical-scavenging capacity of phenols and flavonoids from Clerodendrum cyrtophyllum Turcz leaves. PLoS One 8:e68392. https://doi.org/10.1371/journal.pone.0068392

    Article  Google Scholar 

Download references

Funding

The authors received support from the following Argentine institutions: Universidad Nacional de SAN JUAN, Argentina (PDTS Res. 1054/18); IDEA (Res. 0279/2019) and CONICET and SECITI-San Juan (PIO-No. 15020150100042CO). Daniela Zalazar has a Doctoral Fellowship from CONICET. Rosa Rodriguez and Gabriela Feresín are Research Members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Rodriguez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalazar-García, D., Feresin, G.E. & Rodriguez, R. Optimal operational variables of phenolic compound extractions from pistachio industry waste (Pistacia vera var. Kerman) using the response surface method. Biomass Conv. Bioref. 12, 3761–3770 (2022). https://doi.org/10.1007/s13399-020-00862-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00862-3

Keywords

Navigation