Skip to main content

Advertisement

Log in

Assessment of the Brazilian potential for the production of enzymes for biofuels from agroindustrial materials

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Brazil is one of the largest bioethanol and biodiesel producers in the world. Its biodiversity and environmental characteristics create the opportunity to make Brazil a major producer of biotechnological products, such as enzymes for the bioenergy industry. This review gives a brief status of the production of amylases, cellulases, xylanases, and lipases and their application on the synthesis of bioethanol and biodiesel. The historical utilization of several agroindustrial by-products as feedstocks in such processes are presented, as well as the Brazilian market for these enzymes. Finally, an innovative and multidisciplinary approach based on geographic information systems is used in a case study for the estimation of the potential production of the biocatalysts in Brazil. Results indicate that the national production of concentrated preparations based on amylases, cellulases, lipases, and xylanases could reach 3.1 × 107, 3.2 × 107, 3.1 × 108, and 2.9 × 109 t, respectively. Therefore, Brazil presents a huge potential for the production of biocatalysts from renewable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACE:

Acetylxylan esterase

AFEX:

Ammonium fiber expansion

BC:

Babassu cake

CBC:

Castor bean cake

CBH:

Cellobiohydrolase

CC:

Corn cobs

E3BX:

Endo-1,3-β-xylosidase

E4BX:

Endo-1,4-β-xylanase

EU:

European Union

FAAE:

Fatty acid alkyl esters

FOB:

Free on board

FPU:

Filter paper units

FTAA:

Free Trade Area of the Americas

GAX:

Glucuronoarabinoxylan endo-1,4-β-xylanase

GHG:

Greenhouse gases

GIS:

Geographic information systems

IBGE:

The Brazilian Institute of Geography and Statistics

LCA:

Life cycle assessment

NCM:

Common Numbering of the Mercosur

NEV:

Net energy value

NPPUB:

National Program for Production and Use of Biodiesel

PEI:

Potential environmental impact

RB:

Rice bran

REX:

Reducing-end xylanase

RS:

Rice straw

SB:

Soybean bran

SCB:

Sugarcane bagasse

SHF:

Separate hydrolysis and fermentation

SLSF:

Simultaneous liquefaction, saccharification, and fermentation

SmF:

Submerged fermentation

SSCF:

Simultaneous saccharification and co-fermentation

SSF:

Solid-state fermentation

SSF*:

Simultaneous saccharification and fermentation

WB:

Wheat bran

WS:

Wheat straw

XBX:

Xylan-1,4-β-xylosidase

AC:

Acre

AL:

Alagoas

AM:

Amazonas

AP:

Amapá

BA:

Bahia

CE:

Ceará

DF:

Distrito Federal (capital)

ES:

Espírito Santo

GO:

Goiás

MA:

Maranhão

MG:

Minas Gerais

MT:

Mato Grosso

MS:

Mato Grosso do Sul

PA:

Pará

PE:

Pernambuco

PB:

Paraíba

PI:

Piauí

PR:

Paraná

RJ:

Rio de Janeiro

RR:

Roraima

RO:

Rondônia

RN:

Rio Grande do Norte

SC:

Santa Catarina

SE:

Sergipe

SP:

São Paulo

RS:

Rio Grande do Sul

TO:

Tocantins

References

  1. Carvalho PCF (2012) Brazil. http://www.fao.org/ag/AGP/AGPC/doc/counprof/Brazil/brazil.htm. Accessed 20 Jan 2012

  2. Kohlhepp G (2010) Análise da situação da produção de etanol e biodiesel no Brasil. Estud Av 24(68):223–253

    Article  Google Scholar 

  3. Ross JLS (2006) Ecogeografia do Brasil: subsídios para planejamento ambiental. Oficina de Textos, São Paulo

    Google Scholar 

  4. Pessoa A Jr, Roberto IC, Menossi M, Santos RR, Ortega Filho S, Penna TCV (2005) Perspectives on bioenergy and biotechnology in Brazil. Appl Biochem Biotechnol 121–124:59–70

    Article  Google Scholar 

  5. Unica (Sugarcane Industry Association) (2010) Ethanol production in Brazil. http://english.unica.com.br/dadosCotacao/estatistica/. Accessed 20 Jan1 2012

  6. MDIC (2012) http://www.desenvolvimento.gov.br/sitio/interna/interna.php?area=2&menu=999. Accessed 20 Jan 2012

  7. Kamimura A, Sauer IL (2008) The effect of flex fuel vehicles in the Brazilian light road transportation. Energy Policy 36:1574–1576

    Article  Google Scholar 

  8. PNPB (2010) Biodiesel. http://www.biodiesel.gov.br/programa.html. Accessed 30 May 2010

  9. ANP (National Agency of Petroleum, Natural Gas and Biofuels) (2012) http://www.anp.gov.br/?id=472. Accessed 20 Jan 2012

  10. Quintero JA, Montoya MI, Sánchez OJ, Giraldo OH, Cardona CA (2008) Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy 33:385–399

    Article  Google Scholar 

  11. FIESP/CIESP (2001) www.fiesp.com.br/publicacoes/pdf/ambiente/relatorio_dma.pdf. Accessed 23 Jan 2011

  12. Soccol CR, Vandenbergue LPS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP et al (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825

    Article  Google Scholar 

  13. Souza ADV, Favaro SP, Ítavo LCV, Roscoe R (2009) Caracterização química de sementes e tortas de pinhão manso, nabo-forrageiro e crambe. Pesqui Agropecu Bras 44(10):1328–1335

    Article  Google Scholar 

  14. Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications—a review. Bioresour Technol 98:2000–2009

    Article  Google Scholar 

  15. Balan V, Rogers CA, Chundawat SPS, Sousa LC, Slininger PJ, Gupta R et al (2009) Conversion of extracted oil cake fibers into bioethanol including DDGS, canola, sunflower, sesame, soy, and peanut for integrated biodiesel processing. J Am Oil Chem Soc 86:157–165

    Article  Google Scholar 

  16. Castro AM, Carvalho DF, Freire DMG, Castilho LR (2010) Economic analysis of the production of amylases and other hydrolases by Aspergillus awamori in solid-state fermentation of babassu cake. Enzyme Res 2010:576872. doi:10.4061/2010/576872

    Google Scholar 

  17. Foote KE, Lunch M (1997) Geographic information systems as an integrating technology: context, concept, and definitions. http://www.colorado.edu/geograhpy/geraft/notes/intro/intro_f.html. Accessed 25 Nov 2010

  18. Câmara G (1999) Sistemas de informações geográficas para aplicações ambientais e cadastrais: uma visão geral. http://www.dpi.inpe.br/geopro/trabalhos/analise.pdf. Accessed 23 Jan 2011

  19. Silva ANT, Ramos RAR, Souza LCL, Rodrigues DS, Mendes JFG (2008) SIG: uma plataforma para introdução de técnicas emergentes no planejamento urbano, regional e de transportes: uma ferramenta 3D para análise ambiental urbana, avaliação multicritério, redes neurais artificiais. EdUFSCar, São Carlos

    Google Scholar 

  20. Moo Young M, Moreira AR, Tengerdy RP (1983) Principles of solid-substrate fermentation. In: Smith DE, Berry DR, Kristiansen B (eds) The filamentous fungi. Arnold, London, pp 117–144

    Google Scholar 

  21. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  Google Scholar 

  22. Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135

    Article  Google Scholar 

  23. Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1(3):174–188

    Article  Google Scholar 

  24. Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98

    Article  Google Scholar 

  25. Hölker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol 8:301–306

    Article  Google Scholar 

  26. Santos MM, Rosa AS, Dal’Boit S, Mitchell DA, Krieger N (2004) Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes? Bioresour Technol 93:261–268

    Article  Google Scholar 

  27. Viniegra-González G, Favela-Torres E, Aguilar CN, Romero-Gomez SJ, Dias-Godínez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167

    Article  Google Scholar 

  28. Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol 86(3):207–213

    Article  Google Scholar 

  29. Khanahmadi M, Mitchell DA, Beheshti M, Roostaazad R, Sánchez LR (2006) Continuous solid-state fermentation as affected by substrate flow pattern. Chem Eng Sci 61:2675–2687

    Article  Google Scholar 

  30. Mitchell DA, Von Meien OF, Krieger N (2003) Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochem Eng J 13:137–147

    Article  Google Scholar 

  31. Mitchell DA, Von Meien OF, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26

    Article  Google Scholar 

  32. Rahardjo YSP, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24:161–179

    Article  Google Scholar 

  33. Viniegra-González G, Favela-Torres E (2006) Why solid-state fermentation seems to be resistant to catabolite repression? Food Technol Biotechnol 44(3):397–406

    Google Scholar 

  34. Krishna C (2005) Solid-state fermentation systems: an overview. Crit Rev Biotechnol 25:1–30

    Article  Google Scholar 

  35. Bellon-Maurel V, Orliac O, Christen P (2003) Sensors and measurements in solid-state fermentation: a review. Process Biochem 38:881–896

    Article  Google Scholar 

  36. Pandey A, Soccol CR, Mitchell DA (2000) New developments in solid state fermentation: I—bioprocesses and bioproducts. Process Biochem 35:1153–1169

    Article  Google Scholar 

  37. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77(1):149–162

    Google Scholar 

  38. Faulds CB, Robertson JA, Waldron KW (2008) Effect of pH on the solubilization of brewer’s spent grain by microbial carbohydrases and proteases. J Agric Food Chem 56:7038–7043

    Article  Google Scholar 

  39. Gibreel A, Sandercock JR, Lan J, Goonewardene LA, Zijlstra RT, Curtis JM et al (2009) Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products. Appl Environ Microbiol 75(5):1363–1372

    Article  Google Scholar 

  40. Mezo-Villanueva M, Serna-Saldívar SO (2004) Effect of protease addition on starch recovery from steeped sorghum and maize. Starch/Staerke 56:371–378

    Article  Google Scholar 

  41. Pérez-Carrillo E, Serna-Saldívar SO, Alvarez MM, Cortes-Callejas ML (2008) Effect of sorghum decortication and use of protease before liquefaction with thermoresistant α-amylase on efficiency of bioethanol production. Cereal Chem 85(6):792–798

    Article  Google Scholar 

  42. Pérez-Carrillo E, Serna-Saldívar SO (2007) Effect of protease treatment before hydrolysis with α-amylase on the rate of starch and protein hydrolysis of maize, whole sorghum, and decorticated sorghum. Cereal Chem 84(6):607–613

    Article  Google Scholar 

  43. Wang P, Johnston DB, Rausch KD, Schmidt SJ, Thumbleson ME, Singh V (2009) Effects of protease and urea on a granular starch hydrolyzing process for corn ethanol production. Cereal Chem 86(3):319–322

    Article  Google Scholar 

  44. Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M (2006) Fungal glucoamylases. Biotechnol Adv 24:80–85

    Article  Google Scholar 

  45. Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  Google Scholar 

  46. Roehr M (2001) The biotechnology of ethanol—classical and future applications. Wiley-VCH, Weinheim

    Google Scholar 

  47. Melo WC, Santos AS, Santa Anna LMM, Pereira N Jr (2008) Acid and enzymatic hydrolysis of the residue from castor bean (Ricinnus communis L.) oil extraction for ethanol production: detoxification and biodiesel process integration. J Braz Chem Soc 19(3):418–425

    Article  Google Scholar 

  48. Baruque-Filho E, Baruque MGA, Sant’anna GL Jr (2000) Babassu coconut starch liquefaction: an industrial scale approach to improve conversion yield. Bioresour Technol 75:49–55

    Article  Google Scholar 

  49. Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25

    Article  Google Scholar 

  50. McAloon A, Taylor F, Yee W, Ibsen K, Wooley R (2000) Determining the costs of producing ethanol from corn starch and lignocellulosic feedstocks. NREL technical report, NREL/TP-580-28893

  51. Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB (2006) Modelling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crops Prod 23:288–296

    Article  Google Scholar 

  52. Perkis D, Tyner W, Dale R (2008) Economic analysis of a modified dry grind ethanol process with recycle of pretreated and enzymatically hydrolyzed distiller’s grains. Bioresour Technol 99:5243–5249

    Article  Google Scholar 

  53. Arifeen N, Wang R, Kookos IK, Webb C, Koutinas A (2007) Process design and optimization of novel wheat-based continuous bioethanol production system. Biotechnol Prog 23:1394–1403

    Article  Google Scholar 

  54. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  Google Scholar 

  55. Castro AM (2010) Aproveitamento de co-produtos agroindustriais para produção de um complexo enzimático contendo amilases. Ph.D. thesis, Federal University of Rio de Janeiro

  56. Bhanja T, Rout S, Banerjee R, Bhattacharyya BC (2007) Comparative profiles of α-amylase production in conventional tray reactor and GROWTEK bioreactor. Bioprocess Biosyst Eng 30:369–376

    Article  Google Scholar 

  57. Castro AM, Andrea TV, Castilho LR, Freire DMG (2010) Use of mesophilic fungal amylases produced by solid-state fermentation in the cold hydrolysis of raw babassu cake starch. Appl Biochem Biotechnol 162:1612–1625

    Article  Google Scholar 

  58. Kunamneni A, Permaul K, Singh S (2005) Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 100(2):168–171

    Article  Google Scholar 

  59. Fernandes LP, Ulhoa CJ, Asquieri ER, Monteiro VN (2007) Produção de amilases pelo fungo Macrophomina phaseolina. Rev Eletrônica de Farm IV(1):43–51

    Google Scholar 

  60. Peixoto SC, Jorge JA, Terenzi HF, Polizeli MLTM (2003) Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases. Int Microbiol 6:269–273

    Article  Google Scholar 

  61. Castro AM, Andrea TV, Carvalho DF, Teixeira MMP, Castilho LR, Freire DMG (2011) Valorization of residual agroindustrial cakes by fungal production of multienzyme complexes and their use in cold hydrolysis of raw starch. Waste Biomass Valor 2:291–302

    Article  Google Scholar 

  62. Castro AM, Ribeiro BD (2012) Methods for detection of amylolytic activities. In: Vermelho AB, Couri S (eds) Methods to determine enzymatic activity. Bentham Science, Sharjah, pp 63–77

  63. Wilson DB, Irwin DC (1999) Genetics and properties of cellulases. In: Scheper T (ed) Adv Biochem Eng/Biotechnol. Springer, Berlin, pp 1–21

    Google Scholar 

  64. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  Google Scholar 

  65. Castro AM, Pereira N Jr (2010) Production, properties and application of cellulases in the hydrolysis of agroindustrial residues. Quim Nova 33(1):181–188

    Article  Google Scholar 

  66. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Article  Google Scholar 

  67. Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101:4834–4841

    Article  Google Scholar 

  68. Fang X, Shen Y, Zhao J, Bao X, Qu Y (2010) Status and prospects of lignocellulosic bioethanol production in India. Bioresour Technol 101:4814–4819

    Article  Google Scholar 

  69. Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna KV et al (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833

    Article  Google Scholar 

  70. Kim JS, Park SC, Kim JW, Park JC, Park SM, Lee JS (2010) Production of bioethanol from lignocellulose: status and perspectives in Korea. Bioresour Technol 101:4801–4805

    Article  Google Scholar 

  71. Mabee WE, Saddler JN (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101:4806–4813

    Article  Google Scholar 

  72. Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101:4842–4850

    Article  Google Scholar 

  73. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  Google Scholar 

  74. Howard RL, Abotsi E, Van Rensburg ELJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619

    Google Scholar 

  75. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  76. Ramos LP (2003) The chemistry involved in the team pretreatment of lignocellulosic materials. Quim Nova 26(6):863–871

    Article  Google Scholar 

  77. Talebnia F, Karakashev D, Angelidaki I (2010) Production of ethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753

    Article  Google Scholar 

  78. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  79. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  Google Scholar 

  80. Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  Google Scholar 

  81. Ferreira V, Faber MO, Mesquita SS, Pereira N Jr (2010) Simultaneous saccharification and fermentation process of different cellulosic substrates using a recombinant Saccharomyces cerevisae harbouring the β-glucosidase gene. Electron J Biotechnol 13(2):1–7

    Article  Google Scholar 

  82. Vásquez MP, Silva JNC, Souza MB Jr, Pereira N Jr (2007) Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 136–140:141–153

    Article  Google Scholar 

  83. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida shehatae. Enzyme Microbial Technol 19:220–225

    Article  Google Scholar 

  84. Castro AM, Carvalho MLA, Leite SGF, Pereira N Jr (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37:151–158

    Article  Google Scholar 

  85. Cardona AC, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766

    Article  Google Scholar 

  86. Philippidis GP, Hatzis C (1997) Biochemical engineering analysis of critical process factors in the biomass-to-ethanol technology. Biotechnol Prog 13:222–231

    Article  Google Scholar 

  87. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117

    Article  Google Scholar 

  88. Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Bioref 4:77–93

    Article  Google Scholar 

  89. Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327

    Google Scholar 

  90. Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991

    Article  Google Scholar 

  91. Hayward TK, Hamilton J, Tholudur A, McMillan JD (2000) Improvements in titer, productivity, and yield using solka-floc for cellulase production. Appl Biochem Biotechnol 84–86:859–874

    Article  Google Scholar 

  92. Barta Z, Kovacs K, Reczey K, Zacchi G (2010) Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. Enzyme Res 2010:734182. doi:10.4061/2010/734182

    Google Scholar 

  93. Piccolo C, Bezzo F (2009) A techno-economic comparison between two technologies for bioethanol production from lignocelluloses. Biomass Bioeng 33(3):478–491

    Article  Google Scholar 

  94. Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383

    Article  Google Scholar 

  95. Mores WD, Knutsen JS, Davis RH (2001) Cellulase recovery via membrane filtration. Appl Biochem Biotechnol 91–93:297–309

    Article  Google Scholar 

  96. Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161:274–287

    Article  Google Scholar 

  97. Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824

    Article  Google Scholar 

  98. Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14:301–304

    Article  Google Scholar 

  99. Lima ALG, Nascimento RP, Bon EPS, Coelho RRR (2005) Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzyme Microbial Technol 37:272–277

    Article  Google Scholar 

  100. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64(3):461–488

    Article  Google Scholar 

  101. Zhang YP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  Google Scholar 

  102. Castro AM, Ferreira MC, Cruz JC, Pedro KCNR, Carvalho DF, Leite SGF et al (2010) High-yield endoglucanase production by Trichoderma harzianum IOC-3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res 2010:854526. doi:10.4061/2010/854526

    Google Scholar 

  103. Castro AM, Pedro KCNR, Cruz JC, Ferreira MC, Leite SGF, Pereira N Jr (2010) Trichoderma harzianum IOC-4038: a promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin. Appl Biochem Biotechnol 162:2111–2122

    Article  Google Scholar 

  104. Zhuang J (2004) Economic analysis of cellulase production by Clostridium thermocellum in solid state and submerged fermentation. http://lib.uky.edu/etd/ukyagec2004t00186/jzhuang.pdf. Accessed 12 Mar 2011

  105. Arifeen N, Wang R, Kookos I, Webb C, Koutinas A (2007) Optimization and cost estimation of novel wheat biorefining for continuous production of fermentation feedstocks. Biotechnol Prog 23:872–880

    Google Scholar 

  106. Pericin D, Madarev-Popovic S, Radulov-Popovic L, Skrinjar M (2008) Evaluate of pumpkin oil cake as substrate for the cellulase production by Penicillium roquefortii in solid state fermentation. Romanian Biotechnol Lett 13(4):3815–3820

    Google Scholar 

  107. Sohail M, Siddiqi R, Ahmad A, Khan AS (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6):437–441

    Article  Google Scholar 

  108. Mo H, Zhang X, Li Z (2004) Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture. Process Biochem 39:1293–1297

    Article  Google Scholar 

  109. Muthuvelayudham R, Viruthagiri T (2006) Fermentative production and kinetics of cellulase protein on Trichoderma reesei using sugarcane bagasse and rice straw. Afr J Biotechnol 5(20):1873–1881

    Google Scholar 

  110. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  Google Scholar 

  111. Pettersen RC (1984) The chemical composition of wood. http://www.fpl.fs.fed.us/documnts/pdf1984/pette84a.pdf. Accessed 12 Mar 2011

  112. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  113. Bissoon S, Christov L, Singh S (2002) Bleach boosting effects of purified xylanase from Thermomyces lanuginosus SSBP on bagasse pulp. Process Biochem 37:567–572

    Article  Google Scholar 

  114. Barker IJ, Petersen L, Reilly PJ (2010) Mechanism of xylobiose hydrolysis by GH43 β-xylosidase. J Phys Chem B 114:15389–15393

    Article  Google Scholar 

  115. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  Google Scholar 

  116. BRENDA (The Comprehensive Enzyme Information System) (2011) http://www.brenda-enzymes.org/index.php4?back=1. Accessed 12 Mar 2011

  117. Novozymes (2011). Annual Report 2010. http://www.novozymes.com/en/investor/financial-reports/Documents/EN.pdf. Accessed 30 Jan 2011

  118. Jeffries TW, Grigorev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A et al (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25(3):319–326

    Article  Google Scholar 

  119. Sedlak M, Ho NWY (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684

    Article  Google Scholar 

  120. Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153:3044–3054

    Article  Google Scholar 

  121. Zhang J, Shao X, Townsend OV, Lynd LR (2009) Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222—part I: kinetic modeling and parameters. Biotechnol Bioeng 104(5):920–931

    Article  Google Scholar 

  122. Sun Y, Cheng Y (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  MathSciNet  Google Scholar 

  123. Wilson JJ, Deschatelets L, Nishikawa NK (1989) Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspenwood hemicellulose by Pichia stipitis CBS 5776. Appl Microbiol Biotechnol 31(5–6):592–596

    Article  Google Scholar 

  124. Fujii T, Fang X, Inoue H, Murakami K, Sawayama S (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:1–8

    Article  Google Scholar 

  125. Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1–11

    Article  Google Scholar 

  126. Berlin A, Maximenko V, Gilkes N, Saddler J (2006) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97(2):287–296

    Article  Google Scholar 

  127. Coral G, Arikan B, Ünaldi MN, Güvenmez HK (2002) Some properties of thermostable xylanase from an Aspergillus niger strain. Ann Microbiol 52:299–306

    Google Scholar 

  128. Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025

    Article  Google Scholar 

  129. Svarachorn A (1999) Production of fungal-xylanase using agricultural waste by solid state fermentation. J Sci Res Chulalongkorn Univ 24(1):13–20

    Google Scholar 

  130. Katapodis P, Crhistakopoulou V, Christakopolous P (2007) Optimization of xylanase production by Sporotrichum thermophile in wheat straw using response surface methodology. Biochem Eng J 35(2):136–141

    Article  Google Scholar 

  131. Damaso MCT, Castro AM, Castro RM, Andrade CMMC, Pereira N Jr (2004) Application of xylanase from Thermomyces lanuginosus IOC-4145 for enzymatic hydrolysis of corn cob and sugarcane bagasse. Appl Biochem Biotechnol 113–116:1003–1012

    Article  Google Scholar 

  132. Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K (2009) Xylanase production using inexpensive agricultural wastes and its partial characterization from an halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 25:197–204

    Article  Google Scholar 

  133. Guerfali M, Gargouri A, Belghith H (2008) Talaromyces thermophilus β-D-xylosidase: purification, characterization and xylobiose synthesis. Appl Biochem Biotechnol 150:267–279

    Article  Google Scholar 

  134. Gutarra MLE, Godoy MG, Silva JN, Guedes IA, Lins U, Castilho LR et al (2009) Lipase production and Penicillium simplicissimum morphology in solid-state and submerged fermentations. Biotechnol J 4:1450–1459

    Article  Google Scholar 

  135. Treichel H, Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3(2):182–196

    Article  Google Scholar 

  136. Pilarek M, Szewczyk KW (2007) Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases. J Biotechnol 127(4):736–744

    Article  Google Scholar 

  137. Xu X (2000) Production of specifically-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur J Lipid Sci Technol 102(4):287–303

    Article  Google Scholar 

  138. Köhler J, Wünsch B (2007) The allosteric modulation of lipases and its possible biological relevance. Theor Biol Med Model 4:34–54

    Article  Google Scholar 

  139. Lee JH, Kim SB, Park C, Tae B, Han SO, Kim SW (2010) Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases. Appl Biochem Biotechnol 161:365–371

    Article  Google Scholar 

  140. Salum TFC, Villeneuve P, Barea B, Yamamoto CI, Côcco LC, Mitchell DA et al (2010) Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochem 45(8):1348–1354

    Article  Google Scholar 

  141. Saxena RK, Ghosh PK, Gupta R, Davidson WS, Bradoo S, Gulati R (1999) Microbial lipases: potential biocatalysts for the future industry. Curr Sci 77(1):101–115

    Google Scholar 

  142. Vasudevan PT, Briggs M (2008) Biodiesel production: current status of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  Google Scholar 

  143. Kuhn G, Marangoni M, Freire DMG, Soares VF, Godoy MG, Castro AM et al (2010) Esterification activities on non-commercial lipases after pre-treatment in pressurized propane. J Chem Technol Biotechnol 85:839–844

    Article  Google Scholar 

  144. Antczak MS, Kubiak A, Antczak T, Bielecki S (2009) Enzymatic biodiesel synthesis: key factors affecting efficiency of the process. Renew Energy 34:1185–1194

    Article  Google Scholar 

  145. He Q, Xu Y, Teng Y, Wang D (2008) Biodiesel production catalyzed by whole-cell lipase from Rhizopus chinensis. Chin J Catal 29(1):41–46

    Article  Google Scholar 

  146. Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:692–700

    Article  Google Scholar 

  147. Castilho LR, Polato CMS, Baruque EA, Sant’Anna GL Jr, Freire DMG (2000) Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem Eng J 4:239–247

    Article  Google Scholar 

  148. Tan T, Shang F, Zhang X (2010) Current development of biorefinery in China. Biotechnol Adv 28:543–555

    Article  Google Scholar 

  149. Sekhon A, Dahiya N, Tewari RP, Hoondal GS (2006) Production of extracellular lipase by Bacilus megaterium AKG-1 in submerged fermentation. Indian J Biotechnol 5:179–183

    Google Scholar 

  150. Godoy MG, Gutarra MLE, Maciel FM, Felix SP, Bevilaqua JV, Machado OLT et al (2009) Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production. Enzyme Microbial Technol 44(5):317–322

    Article  Google Scholar 

  151. Dai D, Xia L (2005) Enhanced production of Penicillium expansum PED-03 lipase through control of culture conditions and application of the crude enzyme in kinetic resolution of racemic allethrolone. Biotechnol Prog 21:1165–1168

    Article  Google Scholar 

  152. Gutarra MLE, Godoy MG, Maugeri F, Rodrigues MI, Freire DMG, Castilho LR (2009) Production of an acidic and thermostable lipase of the fungus Penicillium simplicissimum by solid state fermentation. Bioresour Technol 100(21):5249–5254

    Article  Google Scholar 

  153. Kempka AP, Lipke NL, Pinheiro TLF, Menoncin S, Treichel H, Freire DMG et al (2008) Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst Eng 31:119–125

    Article  Google Scholar 

  154. Faostat (2011) http://faostat.fao.org/site/567/default.aspx#ancor. Accessed 12 Mar 2011

  155. IBGE (2011) http://www.ibge.gov.br. Accessed 20 Jan 2011

  156. Carvalho FC (1992) Disponibilidade de resíduos agroindustriais e do beneficiamento de produtos agrícolas. Inf Econ 22(12):31

    MathSciNet  Google Scholar 

  157. DESER (2007) A Cadeia Produtiva do Babaçu. www.deser.org.br/Estudos_Exploratorios.asp. Accessed 23 Feb 2010

  158. Freire RMM (2006) Sistemas de Produção. http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Mamona/CultivodaMamona_2ed/oleo.html. Accessed 12 Mar 2011

  159. Costa WM, Ludke MCMM, Portz L, Nascimento GR, Pereira BB, Ludke JV et al (2008) Valor nutritivo da torta de mamona (Ricinnus communis L.) para tilápia do Nilo (Oreochromis niloticus). In: I Congresso Brasileiro de Nutrição Animal. http://www.cbnutricaoanimal.com.br/Artigos/ARTIGO_TORTA_MAMONA_Waleska_Costa.pdf. Accessed 12 Mar 2011

  160. Silva AGM, Borges I, Neiva JN, Rodriguez NM, Saliba EOS, Morais SA et al (2008) Degradabilidade in situ da torta de babaçu—matéria seca e proteína. www.snpa.com.brcongresso2008. Accessed 23 Feb 2010

  161. Neiva Junior AP, Silva Filho JC, Tiesenhausen IMEVV, Freitas RTF, Couto Filho CCC, Nogueira D (2007) Efeitos de diferentes aditivos sobre a qualidade fermentativa da silagem de resíduo de maracujá amarelo. Ciênc e Agrotec 31(5):1519–1524

    Article  Google Scholar 

  162. Ciocca MLS, Warpechowski MB, Berhnard EA (1998) Characterization of a specific laboratorial method for alkali-treated roughages. Ciênc Rural 28(3):489–495

    Article  Google Scholar 

  163. Zanine AM, Santos EM, Ferreira DJ, Pereira OG, Almeida JCC (2006) Efeito do farelo de trigo sobre as perdas, recuperação da matéria seca e composição bromatológica de silagem de capim-mombaça. Braz J Vet Res Anim Sci 43(6):803–809

    Google Scholar 

  164. Cabral LS, Valadares Filho SC, Zervoudakis JT, Souza AL, Detmann E (2005) In situ degradability of dry matter, crude protein and fiber of some feeds. Pesqui Agropecu Bras 40(8):777–781

    Article  Google Scholar 

  165. Rostagno HS, Silva DJ, Costa PMA (2005) Composição de alimentos e exigências nutricionais de aves e suínos. Ed UFV, Viçosa

    Google Scholar 

  166. Euclides VPB, Silva JM, O’Donovan PB (1979) Efeito da suplementação com feno na parte aérea da mandioca sobre o consumo e digestibilidade da palha de arroz. http://www.cnpgc.embrapa.br/publicacoes/cot/COT01.html. Accessed 12 Mar 2011

  167. Unica (Sugarcane Industry Association) (2010) http://www.unica.com.br/noticias/show.asp?nwsCode=%7B1A44C1EA-92CE-44C1-AE09-431825C01193%7D. Accessed 12 Mar 2011

  168. BNDES (Brazilian Development Bank) (2003) http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arquivos/conhecimento/seminario/alcool_discussao.pdf. Accessed 12 Mar 2011

  169. Wehrmann MESF, Vianna JNS, Duarte LMG (2006) Biodiesel de soja: política energética, contribuição das oleaginosas e sustentabilidade. http://www.anppas.org.br/encontro_anual/encontro3/arquivos/TA457-28032006-162404.DOC. Accessed 12 Mar 2011

  170. Scopus (2011) http://www.scopus.com. Accessed 25 Jan 2011

  171. Turesson H, Marttila S, Gustavsson KE, Hofvander P, Olsson ME, Bülow L et al (2010) Characterization of oil and starch accumulation in tubers of Cyperus esculentus var. sativus (Cyperaceae): a novel model system to study oil reserves in nonseed tissues. Am J Bot 97:1884–1893

    Article  Google Scholar 

  172. BCC Research (2009) World markets for fermentation ingredients. http://www.bccresearch.com/report/FOD020C.html. Accessed 23 Jan 2011

  173. BCC Research (2008) Enzymes for industrial applications. http://www.bccresearch.com/report/BIO030E.html. Accessed 23 Jan 2011

  174. Aliceweb (2011) http://aliceweb.desenvolvimento.gov.br. Accessed 23 Jan 2011

  175. USITC (United States International Trade Commission) (2010) http://dataweb.usitc.gov. Accessed 3 Jun 2010

  176. Ojima ALRO (2006) Perfil de logística de transporte de soja no Brasil. Inf Econ 36(1):17–25

    Google Scholar 

  177. Genencor (2011) http://www.genencor.com/wps/wcm/connect/genencor/genencor/products_and_services/agri_processing/renewable_fuels/fuel_ethanol_xstarchx/fuel_ethanol_xstarchx_en.htm. Accessed 23 Jan 2011

  178. Araujo DM, Silva JHV, Araujo JA, Teixeira ENM, Jordão Filho J, Ribeiro MLG (2008) Wheat bran in growing phase laying hans feeding. Rev Bras Zootec 37:67–72

    Article  Google Scholar 

  179. RFA (Renewable Fuels Association) (2011) Biorefinery locations. http://www.ethanolrfa.org/bio-refinery-locations/. Accessed 25 Jan 2011

  180. EPA (U.S. Environmental Protection Agency) (2005) Energy Policy Act. http://www.epa.gov/regulations/laws/epa.html. Accessed 25 Jan 2011

  181. EIA (U.S. Energy Information Administration) (2010) Annual energy outlook 2010. www.eia.doe.gov/oiaf/aeo/pdf/trend_4.pdf. Accessed 25 Jan 2011

  182. CONAB (Companhia Nacional de Abastecimento) (2011) Acompanhamento de safra brasileira: cana-de-açúcar, terceiro levantamento. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_01_06_09_14_50_boletim_cana_3o_lev_safra_2010_2011..pdf. Accessed 22 Jan 2011

  183. CONAB (2011) Acompanhamento de safra brasileira: grãos, Quarto levantamento. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_01_06_08_41_56_boletim_graos_4o_lev_safra_2010_2011.pdf. Accessed 22 Jan 2011

  184. Fargione J, Hill J, Tilman D, Polasky S, Hawthome P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  Google Scholar 

  185. Lynd LR, Wang MQ (2004) A product-nonespecific framework for evaluating the potential of biomass-based products to displace fossil fuels. J Ind Ecol 7(3–4):17–32

    Google Scholar 

  186. Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14(3):140–146

    Article  Google Scholar 

  187. Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  Google Scholar 

  188. Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Nepomuceno AL, Molinari HBC, Bom EPS (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valor 1:65–76

    Article  Google Scholar 

  189. Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2010) Multiple linear regression model for predicting biomass digestibility from structural features. Bioresour Technol 101:4791–4799

    Google Scholar 

  190. Luo L, Van der Voet E, Huppes G (2010) Biorefining of lignocellulosic feedstock—technical, economic and environmental considerations. Bioresour Technol 101:5023–5032

    Article  Google Scholar 

  191. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2010) Technoeconomical analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioeng 34:1914–1921

    Article  Google Scholar 

  192. Vasudevan PT, Fu B (2010) Environmentally sustainable biofuels: advances in biodiesel research. Waste Biomass Valor 1:47–63

    Article  Google Scholar 

  193. Castro AM, Castilho LR, Freire DMG (2011) An overview on advances of amylases production and their use in bioethanol production by conventional and non-conventional processes. Biomass Conv Bioref 1:245–255

    Article  Google Scholar 

  194. Dragisic C, Ashkenazi E, Bede L, Honzák M, Killeen T, Paglia A et al (2011) Tools and methodologies to support more sustainable biofuel feedstock production. J Ind Microbiol Biotechnol 38:371–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Machado de Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Castro, S.M., de Castro, A.M. Assessment of the Brazilian potential for the production of enzymes for biofuels from agroindustrial materials. Biomass Conv. Bioref. 2, 87–107 (2012). https://doi.org/10.1007/s13399-012-0031-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-012-0031-9

Keywords

Navigation