Skip to main content
Log in

Development of a Rock-Salt Structure for High Energy Density Lithium-Ion Batteries

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The lithium-ion battery has been extensively used as one of the most powerful energy storage devices, and its market is increasing by 10% annually. Among promising candidates for the high-performance cathode of the lithium-ion battery, disordered rock-salt structured cathode materials have attracted great attention due to their extended capacities and cost effectiveness over traditional cathode materials with the layered structure through the design of more accessible lithium-ion sites and low-cost transition metals. However, they have not yet been utilized owing to their low electronic/ionic conductivities and poor cycle life. To overcome the major hurdle for improving the electrochemical performance of the disordered rock-salt materials, we synthesize cation- and anion-doped disordered Li3NbO4 with rock-salt structures, Li1.3Nb0.43Ni0.27O2 and Li1.3Nb0.43Ni0.27O1.97F0.05, respectively, and decreased their particle sizes to reduce the Li-ion transport path. Enhanced electrochemical performances of the doped-disordered-rock-salt materials and their underlying mechanism have been addressed by cross-confirmation using various analysis techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thackeray, M.M.: Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc. 142, 2558–2563 (1995). https://doi.org/10.1149/1.2050053

    Article  CAS  Google Scholar 

  2. Cambaz, M.A., et al.: Design of nickel-based cation-disordered rock-salt oxides: the effect of transition metal (M = V, Ti, Zr) Substitution in LiNi0.5M0.5O2 binary systems. ACS Appl. Mater Interfaces 10, 21957–21964 (2018). https://doi.org/10.1021/acsami.8b02266

    Article  CAS  Google Scholar 

  3. Lee, J., et al.: Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014). https://doi.org/10.1126/science.1246432

    Article  CAS  Google Scholar 

  4. Li, G., Zhou, S., Wang, P., Zhao, J.: Halogen-doping in LiCoO2 cathode materials for Li-ion batteries: insights from ab initio calculations. RSC Adv. 5, 107326–107332 (2015). https://doi.org/10.1039/c5ra21258h

    Article  CAS  Google Scholar 

  5. Hirayama, M., Tomita, H., Kubota, K., Ido, H., Kanno, R.: Synthesis and electrochemical properties of nanosized LiFeO2 particles with a layered rocksalt structure for lithium batteries. Mater. Res. Bull. 47, 79–84 (2012). https://doi.org/10.1016/j.materresbull.2011.09.024

    Article  CAS  Google Scholar 

  6. Dussarrat, C., et al.: Synthesis and crystal structures of Li2CuZrO4 polymorphs. J. Solid State Chem. 166, 311–319 (2002). https://doi.org/10.1006/jssc.2002.9593

    Article  CAS  Google Scholar 

  7. Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.016

    Article  CAS  Google Scholar 

  8. Polgar, L.M., Cerpentier, R.R.J., Vermeij, G.H., Picchioni, F., Duin, M.V.: Influence of the chemical structure of cross-linking agents on properties of thermally reversible networks. Pure Appl. Chem. 88, 1103–1116 (2016). https://doi.org/10.1515/pac-2016-0804

    Article  CAS  Google Scholar 

  9. Abdel-Ghany, A., El-Tawil, R.S., Hashem, A.M., Mauger, A., Julien, C.M.: Improved electrochemical performance of LiNi05Mn05O2 by Li-enrichment and AlF3 coating. Materialia 5, 100207 (2019). https://doi.org/10.1016/j.mtla.2019.100207

    Article  CAS  Google Scholar 

  10. Singh, S., Raj, A.K., Sen, R., Johari, P., Mitra, S.: Impact of Cl doping on electrochemical performance in orthosilicate (Li2FeSiO4): a density functional theory supported experimental approach. ACS Appl. Mater Interfaces 9, 26885–26896 (2017). https://doi.org/10.1021/acsami.7b07502

    Article  CAS  Google Scholar 

  11. Qi, Y., Huang, Y., Jia, D., Bao, S.-J., Guo, Z.P.: Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials. Electrochim. Acta 54, 4772–4776 (2009). https://doi.org/10.1016/j.electacta.2009.04.010

    Article  CAS  Google Scholar 

  12. Banyamin, Z., Kelly, P., West, G., Boardman, J.: Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4, 732–746 (2014). https://doi.org/10.3390/coatings4040732

    Article  CAS  Google Scholar 

  13. Satyavani, T.V.S.L., Ramya-Kiran, B., Rajesh-Kumar, V., Srinivas-Kumar, A., Naidu, S.V.: Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells. Eng. Sci. Technol. Int. J. 19, 40–44 (2016). https://doi.org/10.1016/j.jestch.2015.05.011

    Article  Google Scholar 

  14. Hsiao, Y.J., Fang, T.H., Lin, S.J., Shieh, J.M., Ji, L.W.: Preparation and luminescent characteristic of Li3NbO4 nanophosphor. J. Lumin. 130, 1863–1865 (2010)

    Article  CAS  Google Scholar 

  15. Pechini, M. P. (Google Patents, 1967).

  16. Cho, S.J., Uddin, M.J., Alaboina, P. In: Emerging Nanotechnologies in Rechargeable Energy Storage Systems, pp. 83–129 (2017)

  17. Fu, Z., et al.: Preparation and characterization of ABS and copper (II) sulfate coordination composites by planetary ball mill. Polym. Bull. 75, 453–468 (2018). https://doi.org/10.1007/s00289-017-2042-y

    Article  CAS  Google Scholar 

  18. Zhang, N., et al.: Effects of fluorine doping on nickel-rich positive electrode materials for lithium-ion batteries. J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/ab8b00

    Article  Google Scholar 

  19. Ge, C., et al.: Novel hard carbon/graphite composites synthesized by a facile in situ anchoring method as high-performance anodes for lithium-ion batteries. RSC Adv. 8, 34682–34689 (2018). https://doi.org/10.1039/c8ra07170e

    Article  CAS  Google Scholar 

  20. Malik, R., Burch, D., Bazant, M., Ceder, G.: Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010). https://doi.org/10.1021/nl1023595

    Article  CAS  Google Scholar 

  21. Yuliza, E., Murniati, R., Rajak, A., Khairurrijal, Abdullah, M. Atlantis Press.

  22. Zhou, H., et al.: Sintering behavior, phase evolution and microwave dielectric properties of thermally stable (1–x)Li3NbO4−xCaTiO3 composite ceramic. Ceram. Int. 40, 2103–2107 (2014). https://doi.org/10.1016/j.ceramint.2013.07.124

    Article  CAS  Google Scholar 

  23. Chung, H., et al.: Experimental considerations to study Li-excess disordered rock salt cathode materials. J. Mater. Chem. A 9, 1720–1732 (2021). https://doi.org/10.1039/d0ta07836k

    Article  CAS  Google Scholar 

  24. Jones, M.A., et al.: Short-range ordering in a battery electrode, the “cation-disordered” rocksalt Li1.25Nb0.25Mn0.5O2. Chem. Commun. (Camb.) 55, 9027–9030 (2019). https://doi.org/10.1039/c9cc04250d

    Article  CAS  Google Scholar 

  25. Song, J., et al.: Carrier type change induced by fluorine doping in spin-chain compound Ca3Co2O6. RSC Adv. 7, 2745–2752 (2017). https://doi.org/10.1039/c6ra25052a

    Article  CAS  Google Scholar 

  26. Chen, J., et al.: The effects of reversibility of H2–H3 phase transition on Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00500

    Article  Google Scholar 

  27. Wawrzyńska, E., et al.: Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnetAgNiO2. Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.77.094439

    Article  Google Scholar 

  28. Chen, H., Freeman, C.L., Harding, J.H.: Charge disproportionation and Jahn-Teller distortion in LiNiO2and NaNiO2: A density functional theory study. Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.84.085108

    Article  Google Scholar 

  29. Clément, R.J., Kitchaev, D., Lee, J., Gerbrand, C.: Short-range order and unusual modes of nickel redox in a fluorine-substituted disordered rocksalt oxide lithium-ion cathode. Chem. Mater. 30, 6945–6956 (2018). https://doi.org/10.1021/acs.chemmater.8b03794

    Article  CAS  Google Scholar 

  30. Wang, Z., et al.: Template-free synthesis of 3D Nb(3)O(7)F hierarchical nanostructures and enhanced photocatalytic activities. Phys. Chem. Chem. Phys. 15, 3249–3255 (2013). https://doi.org/10.1039/c2cp44326k

    Article  CAS  Google Scholar 

  31. Koyama, Y., Tanaka, I., Nagao, M., Kanno, R.: First-principles study on lithium removal from Li2MnO3. J. Power Sources 189, 798–801 (2009). https://doi.org/10.1016/j.jpowsour.2008.07.073

    Article  CAS  Google Scholar 

  32. Xiao, R., Li, H., Chen, L.: Density Functional Investigation on Li2MnO3. Chem. Mater. 24, 4242–4251 (2012). https://doi.org/10.1021/cm3027219

    Article  CAS  Google Scholar 

  33. Yabuuchi, N., et al.: Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016). https://doi.org/10.1038/ncomms13814

    Article  CAS  Google Scholar 

  34. Arunkumar, T.A., Alvarez, E., Manthiram, A.: Structural, chemical, and electrochemical characterization of layered Li[Li0.17Mn0.33Co0.5-yNiy]O-2 cathodes. J. Electrochem. Soc. 154, A770–A775 (2007). https://doi.org/10.1149/1.2745635

    Article  CAS  Google Scholar 

  35. House, R.A., et al.: Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energ. Environ. Sci. 11, 926–932 (2018). https://doi.org/10.1039/c7ee03195e

    Article  CAS  Google Scholar 

  36. Vanaphuti, P., Bong, S., Ma, L., Ehrlich, S., Wang, Y.: Systematic study of different anion doping on the electrochemical performance of cobalt-free lithium–manganese-rich layered cathode. ACS Appl. Energy Mater. 3, 4852–4859 (2020). https://doi.org/10.1021/acsaem.0c00439

    Article  CAS  Google Scholar 

  37. Kubo, K., Fujiwara, M., Yamada, S., Arai, S., Kanda, M.: Synthesis and electrochemical properties for LiNiO2 substituted by other elements. J. Power Sources 68, 553–557 (1997). https://doi.org/10.1016/S0378-7753(97)02530-5

    Article  CAS  Google Scholar 

  38. Razinkin, A.S., Shalaeva, E.V., Kuznetsov, M.V.: Photoelectron spectroscopy and diffraction of NbO x /Nb(110) surface. Phys. Met. Metallogr. 106, 56–66 (2008). https://doi.org/10.1134/s0031918x08070089

    Article  Google Scholar 

  39. Binder, J.O., et al.: Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 44452–44462 (2018). https://doi.org/10.1021/acsami.8b16049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Ministry of Trade, Industry, and Energy of Korea and supported by the Materials/ Parts Technology Development Program of the Korea Evaluation Institute of Industrial Technology (20011287). This study was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2022R1C1C1011456 and 2022R1F1A1074874).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jungjin Park or Chunjoong Kim.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1123 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Lee, H., Yu, YS. et al. Development of a Rock-Salt Structure for High Energy Density Lithium-Ion Batteries. Electron. Mater. Lett. 19, 359–366 (2023). https://doi.org/10.1007/s13391-022-00397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00397-x

Keywords

Navigation