Skip to main content
Log in

Multi-stacking Indium Zinc Oxide Thin-Film Transistors Post-annealed by Femtosecond Laser

  • Original Article – Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Indium zinc oxide thin-film transistors with a bottom gate structure were made by a channel layer multi-stack process on silicon substrate. Femtosecond laser post-annealing treatment was carried out to study the impact on the electrical properties and the stability of the device. The experimental results show that the electrical properties of the device are improved optimally when 100-s laser post-annealing treatment was carried out, and it had the best stability. The mobility was 5.23 cm2/Vs, the threshold voltage was − 0.26 V, the stable subthreshold swing was 0.81 V/dec, and the electron mobility of the device stayed above 3.82 cm2/Vs after it was exposed to air for 14 days.

Graphic Abstract

Figure a shows the transfer characteristic curve of the IZO TFTs obtained by measuring the drain current (Ids) a function of gate voltage (Vgs) swept from − 0 to 30 V, at a fixed drain voltage (Vds) of 30 V. Figure b shows the devices put in an atmospheric environment for 14 days and then detected their electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Byung Seong, B., Jae Won, C., Jae Hwan, O., Jang, J.: Level shifter embedded in drive circuits with amorphous silicon TFTs. IEEE Trans. Electron Devices 53(3), 494–498 (2006). https://doi.org/10.1109/TED.2005.864383

    Article  CAS  Google Scholar 

  2. Chi-Wen, C., Ting-Chang, C., Po-Tsun, L., Hau-Yan, L., Kao-Cheng, W., Chen-Shuo, H., Chia-Chun, L., Tesung-Yuen, T.: High-performance hydrogenated amorphous-Si TFT for AMLCD and AMOLED applications. IEEE Electron. Device Lett. 26(10), 731–733 (2005). https://doi.org/10.1109/LED.2005.855405

    Article  CAS  Google Scholar 

  3. Lee, S.Y.: Comprehensive Review on Amorphous Oxide Semiconductor Thin Film Transistor. Trans. Electr. Electron. Mater. 21(3), 235–248 (2020). https://doi.org/10.1007/s42341-020-00197-w

    Article  Google Scholar 

  4. Bail, R., Kang, J.W., Kang, Y.J., Chin, B.D.: Binary Solvent Effects on Thermally Crosslinked Small Molecular Thin Films for Solution Processed Organic Light-Emitting Diodes. Electron. Mater. Lett. 17(1), 74–86 (2021). https://doi.org/10.1007/s13391-020-00258-5

    Article  CAS  Google Scholar 

  5. Tiwale, N., Senanayak, S.P., Rubio-Lara, J., Alaverdyan, Y., Welland, M.E.: Optimization of Transistor Characteristics and Charge Transport in Solution Processed ZnO Thin Films Grown from Zinc Neodecanoate. Electron. Mater. Lett. 15(6), 702–711 (2019). https://doi.org/10.1007/s13391-019-00173-4

    Article  CAS  Google Scholar 

  6. Sharma, A., Chourasia, N.K., Acharya, V., Pal, N., Biring, S., Liu, S.-W., Pal, B.N.: Ultra-Low Voltage Metal Oxide Thin Film Transistor by Low-Temperature Annealed Solution Processed LiAlO2 Gate Dielectric. Electron. Mater. Lett. 16(1), 22–34 (2020). https://doi.org/10.1007/s13391-019-00184-1

    Article  CAS  Google Scholar 

  7. Kim, M., Cho, S.-Y., Shin, Y.-S., Seok, Y.-C., Kim, H.-W., Yoon, J.-Y., Choi, R., Lee, J.-H.: Improving Electrical Stability of a-InGaZnO Thin-Film Transistors with Thermally Deposited Self-Assembled Monolayers. Electron. Mater. Lett. 16(5), 451–456 (2020). https://doi.org/10.1007/s13391-020-00232-1

    Article  CAS  Google Scholar 

  8. Faber, H., Das, S., Lin, Y.-H., Pliatsikas, N., Zhao, K., Kehagias, T., Dimitrakopulos, G., Amassian, A., Patsalas, P.A., Anthopoulos, T.D.: Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci. Adv. 3(3), e1602640 (2017). https://doi.org/10.1126/sciadv.1602640

    Article  Google Scholar 

  9. Kim, H., Kwack, Y.-J., Yun, E.-J., Choi, W.-S.: A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance. Sci. Rep. 6(1), 33576 (2016). https://doi.org/10.1038/srep33576

    Article  CAS  Google Scholar 

  10. Miyakawa, M., Nakata, M., Tsuji, H., Fujisaki, Y.: Simple and reliable direct patterning method for carbon-free solution-processed metal oxide TFTs. Sci. Rep. 8(1), 12825 (2018). https://doi.org/10.1038/s41598-018-31134-w

    Article  CAS  Google Scholar 

  11. Xu, W., Hu, L., Zhao, C., Zhang, L., Zhu, D., Cao, P., Liu, W., Han, S., Liu, X., Jia, F., Zeng, Y., Lu, Y.: Low temperature solution-processed IGZO thin-film transistors. Appl. Surf. Sci. 455, 554–560 (2018). https://doi.org/10.1016/j.apsusc.2018.06.005

    Article  CAS  Google Scholar 

  12. Huang, G., Duan, L., Zhao, Y., Dong, G., Zhang, D., Qiu, Y.: Enhanced mobility of solution-processed polycrystalline zinc tin oxide thin-film transistors via direct incorporation of water into precursor solution. Appl. Phys. Lett. 105(12), 122105 (2014). https://doi.org/10.1063/1.4896265

    Article  CAS  Google Scholar 

  13. Jiang, S., Yang, X., Zhang, J., Li, X.: Solution-processed stacked TiO2 and Al2O3 dielectric layers for high mobility thin film transistor. AIP Adv. 8(8), 085109 (2018). https://doi.org/10.1063/1.5034497

    Article  CAS  Google Scholar 

  14. Lee, S.-H., Kim, T., Lee, J., Avis, C., Jang, J.: Solution-processed gadolinium doped indium-oxide thin-film transistors with oxide passivation. Appl. Phys. Lett. 110(12), 122102 (2017). https://doi.org/10.1063/1.4978932

    Article  CAS  Google Scholar 

  15. Seo, J.-S., Jeon, J.-H., Hwang, Y.H., Park, H., Ryu, M., Park, S.-H.K., Bae, B.-S.: Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep. 3(1), 2085 (2013). https://doi.org/10.1038/srep02085

    Article  Google Scholar 

  16. Su, B.-Y., Chu, S.-Y., Juang, Y.-D., Chen, H.-C.: High-performance low-temperature solution-processed InGaZnO thin-film transistors via ultraviolet-ozone photo-annealing. Appl. Phys. Lett. 102(19), 192101 (2013). https://doi.org/10.1063/1.4804993

    Article  CAS  Google Scholar 

  17. Palneedi, H., Park, J.H., Maurya, D., Peddigari, M., Hwang, G.T., Annapureddy, V., Kim, J.W., Choi, J.J., Hahn, B.D., Priya, S., Lee, K.J., Ryu, J.: Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30(14), 1705148 (2018). https://doi.org/10.1002/adma.201705148

    Article  CAS  Google Scholar 

  18. Xu, M., Peng, C., Yuan, Y., Li, X., Zhang, J.: Enhancing the performance of solution-processed thin-film transistors via laser scanning annealing. ACS Appl. Electron. Mater. 2(9), 2970–2975 (2020). https://doi.org/10.1021/acsaelm.0c00588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program (IITP-2021-2020-0-01462) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation), and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No.2020R1I1A3A04037800). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1A6A1A1204794511).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Gon Choi or Sung-Jin Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, F., Lee, JY., Zhao, HL. et al. Multi-stacking Indium Zinc Oxide Thin-Film Transistors Post-annealed by Femtosecond Laser. Electron. Mater. Lett. 17, 451–458 (2021). https://doi.org/10.1007/s13391-021-00296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00296-7

Keywords

Navigation