Skip to main content
Log in

Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, various concentrations of Fe doped TiO2 nanoparticles have been successfully synthesized using the sol–gel method. A variety of characterization techniques as ultra-violet visible (UV–Vis) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometry (VSM) and field emission scanning electron microscopy (FESEM) were employed to analyze the prepared nanopowders. XRD measurement confirmed the substitution of Fe ion without disturbing the tetragonal crystal system of TiO2. The crystallite size was found to decrease and lattice strain increases upon doping estimated by Williamson Hall plot. Furthermore, the average grain size calculated by FESEM found was between 10 and 30 nm for pure and doped TiO2. UV–Vis spectroscopy showed an increase in absorption accompanied red shift and increase in band gap energies from 3.36 to 3.62 eV with the addition of Fe. The FTIR spectroscopy was employed to confirm the presence of functional groups in the fabricated nanopowders. Upon mixing the saturation magnetization (Ms) varying from (2.12 to 1.51)10−2 emu/g was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dietl, T., Tomasz, H., Ohno, F., Matsukura, J.Cibert, Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)

    Article  Google Scholar 

  2. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004)

    Article  Google Scholar 

  3. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Yu Chtchelkanova, A., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  Google Scholar 

  4. Chambers, S.A., Farrow, R.F.C.: New possibilities for ferromagnetic semiconductors. MRS Bull. 28, 729 (2003)

    Article  Google Scholar 

  5. Bryan, J.D., Gamelin, D.R.: Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications. Prog. Inorg. Chem. 54(47), 47–126 (2005)

    Article  Google Scholar 

  6. Zhao, Z.W., Tay, B.K., Chen, J.S., Hu, J.F., Lim, B.C., Li, G.P.: Large magnetic moment observed in Co-doped ZnO nanocluster-assembled thin films at room temperature. Appl. Phys. Lett. 90, 152502 (2007)

    Article  Google Scholar 

  7. Calle, A.M., Sanchez, L.C., Arboleda, J.D., Beltran, J.J., Barrero, C.A., Osorio, J., Nomura, K.: Mixtures of iron and anatase TiO2 by mechanical alloying. Microelectron. J. 39, 1322 (2008)

    Article  Google Scholar 

  8. Fujishima, A., Rao, T.N., Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000)

    Article  Google Scholar 

  9. Reddy, B.M., Ganesh, I., Khan, A.: Stabilization of nanosized titania-anatase for high temperature catalytic applications. J. Mol. Catal. A Chem. 223, 295 (2004)

    Article  Google Scholar 

  10. Yu, J., Xiang, Q., Zhou, M.: Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl. Catal. B Environ. 90, 595 (2009)

    Article  Google Scholar 

  11. Yuji, M., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001)

    Article  Google Scholar 

  12. Hong, N.H., Sakai, J., Prellier, W., Hassini, A., Ruyter, A., Gervais, F.: Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B 70, 195204 (2004)

    Article  Google Scholar 

  13. Chen, J., Rulis, P., Ouyang, L., Satpathy, S., Ching, W.Y.: Vacancy-enhanced ferromagnetism in Fe-doped rutile TiO2. Phys. Rev. B 74, 235207 (2006)

    Article  Google Scholar 

  14. Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe-doped SnO2SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)

    Article  Google Scholar 

  15. Dhanapandian, S., Arunachalam, A., Manoharan, C.: Highly oriented and physical properties of sprayed anatase Sn-doped TiO2 thin films with an enhanced antibacterial activity. Appl. Nanosci. 6, 387 (2016)

    Article  Google Scholar 

  16. Mugundan, S., Rajamannan, B., Virothagiri, G., Shanmugam, N., Gobi, R., Praveen, P.: Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 5, 449 (2015)

    Article  Google Scholar 

  17. Jianping, X., Shi, S., Li, L., Zhang, X., Wang, Y., Chen, X., Wang, J., Lv, L., Zhang, F., Zhong, W.: Structural, optical, and ferromagnetic properties of Co-doped TiO2 films annealed in vacuum. J. Appl. Phys. 107, 053910 (2010)

    Article  Google Scholar 

  18. Rumaiz, A.K., Bakhtyar, A., Ceylan, A., Boggs, M., Beebe, T., Ismat, S.: Shah, Experimental studies on vacancy induced ferromagnetism in undoped TiO2. Solid State Commun. 144, 334 (2007)

    Article  Google Scholar 

  19. Grecu, M.N., Constantinescu, S., Tărăbăşanu-Mihăilă, D., Ghica, D., Bibicu, I.: Spin dynamics in 57Fe-doped TiO2 anatase nanoparticles. Phys. Status Solidi (b) 248, 2927 (2011)

    Article  Google Scholar 

  20. Grecu, M.N., Macovei, D., Ghica, D., Logofatu, C., Valsan, S., Apostol, N.G., Lungu, G.A., Negrea, R.F., Piticescu, R.R.: Co environment and magnetic defects in anatase CoxTi1−xO2 nanopowders. Appl. Phys. Lett. 102, 161909 (2013)

    Article  Google Scholar 

  21. Dinkar, V.A., Shridhar, S.J.: Synthesis, characterization, and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol–gel method. Appl. Nanosci. 6, 965 (2016)

    Article  Google Scholar 

  22. Pereira, L.C.J., Nunes, M.R., Monteiro, O.C., Silvestre, A.J.: Magnetic properties of Co-doped TiO2 anatase nanopowders. Appl. Phys. Lett. 93, 222502 (2008)

    Article  Google Scholar 

  23. Kaspar, T.C., Droubay, T., Heald, S.M., Engelhard, M.H., Nachimuthu, P., Chambers, S.A.: Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 77, 201303 (2008)

    Article  Google Scholar 

  24. Rao, B.K., Jena, P.: Giant magnetic moments of nitrogen-doped Mn clusters and their relevance to ferromagnetism in Mn-doped GaN. Phys. Rev. Lett. 89, 185504 (2002)

    Article  Google Scholar 

  25. Zhang, Y., Shen, Y., Gu, F., Wu, M., Xie, Y., Zhang, J.: Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Appl. Surf. Sci. 256, 85 (2009)

    Article  Google Scholar 

  26. Hiromi, Y., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B., Anpo, M.: Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal.Today 84, 191 (2003)

    Article  Google Scholar 

  27. Dholam, R., Patel, N., Adami, M., Miotello, A.: Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int. J. Hydrogen Energy 34, 5337 (2009)

    Article  Google Scholar 

  28. Calle, A.M., Sanchez, L.C., Arboleda, J.D., Beltran, J.J., Barrero, C.A., Osorio, J., Nomura, K.: Mixtures of iron and anatase TiO2 by mechanical alloying. Microelectron. J. 39, 1322 (2008)

    Article  Google Scholar 

  29. Ikram, M., Niaz, N.A., Khalid, N.R., Ramzan, M., Imran, M., Ali, S.: Tetra blended based hybrid bulk heterojunction solar cells. J. Ovonic Res. 10, 257 (2014)

    Google Scholar 

  30. Ali, A., Zafar, H., Zia, M., Haq, I., Rehman Phull, A., Ali, J.S., Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016)

    Article  Google Scholar 

  31. Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., de Coss, R., Oskam, G.: Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)

    Article  Google Scholar 

  32. Zhang, Y.H., Reller, A.: Nanocrystalline iron-doped mesoporous titania and its phase transition. J. Mater. Chem. 11, 2537 (2001)

    Article  Google Scholar 

  33. Jiefang, Z., Zheng, W., He, B., Zhang, J., Anpo, M.: Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A Chem. 216, 35 (2004)

    Article  Google Scholar 

  34. Wang, C., Böttcher, C., Bahnemann, D.W., Dohrmann, J.K.: A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. J. Mater. Chem. 13, 2322 (2003)

    Article  Google Scholar 

  35. Masanori, H., Joji, T., Inagaki, M., Iwata, H.: Direct formation of iron(III)-doped titanium oxide (anatase) by thermal hydrolysis and its structural property. J. Am. Ceramic Soc. 87, 35 (2008)

    Google Scholar 

  36. Alexandrescu, R., Birjega, R., Popovici, E., Soare, I., Gavrila-Florescu, L., Voicu, I., Sandu, I., Dumitrache, F., Prodan, G., Vasile, E., Figgemeier, E.: Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis. Thin Solid Films 515, 8438 (2007)

    Article  Google Scholar 

  37. Zhang, X., Zhou, M., Lei, L.: Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal. Commun. 7, 427 (2006)

    Article  Google Scholar 

  38. Song, L., Liu, X., Chen, Y., Jiang, R.: A novel preparation of highly active iron-doped titania photocatalysts with a p–n junction semiconductor structure. J. Alloys Compounds. 506, 877 (2010)

    Article  Google Scholar 

  39. Ranjit KT, Viswanathan B (1997) J Photochem. Photobiol. A Chem. 108: 79

  40. Cernea, M., Valsangiacom, C., Trusca, R., Vasiliu, F.: Synthesis of iron-doped anatase-TiO2 powders by a particulate sol–gel route. J. Optoelectron. Adv. Mater. 9, 2648 (2007)

    Google Scholar 

  41. Dholam, R., Patel, N., Adami, M., Miotello, A.: Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34, 5337 (2009)

    Article  Google Scholar 

  42. Reyes-Rojasa, A., Esparza-Poncea, H., De la Torre, S.D., Torres-Moye, E.: Compressive strain-dependent bending strength property of Al2O3–ZrO2 (1.5 mol% Y2O3) composites performance by HIP. Mater. Chem. Phys. 114, 756 (2009)

    Article  Google Scholar 

  43. KantiKole, A., Kumbhakar, P.: Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Results Phys. 2, 150 (2012)

    Article  Google Scholar 

  44. Ghosh, A., Kumari, N., Tewari, S., Bhattacharjee, A.: Structural and optical properties of pure and Al doped ZnO nanocrystalsIndian. J. Phys. 87, 1099 (2013)

    Google Scholar 

  45. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolframL’elargissement des raies de rayons x obtenues des limailles d’aluminium et de tungsteneDie verbreiterung der roentgeninterferenzlinien von aluminium- und wolframspaenen. Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  46. Nafees, M., Liaqut, W., Ali, S., Shafique, M.A.: Synthesis of ZnO/Al: ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping. Appl. Nanosci. 3, 49 (2013)

    Article  Google Scholar 

  47. Hong, N.H., Sakai, J., Pellier, W.: Distribution of dopant in Fe:TiO2 and Ni:TiO2 thin films. J. Mag. Mag. Mater. 281, 347 (2004)

    Article  Google Scholar 

  48. Thu, D.X., Trung, V.Q., Nghia, N.M., Khang, N.C., Lam, T.D.: Effects of Fe doping on the structural, optical, and magnetic properties of TiO2 nanoparticles. J. Electr. Mater. 45, 11 (2016)

    Google Scholar 

  49. Zhang, Yu-Hong, Reller, Armin: Nanocrystalline iron-doped mesoporous titania and its phase transition. J. Mater. Chem. 11, 2537 (2001)

    Article  Google Scholar 

  50. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L.: Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Sci. Iranica 20, 1018 (2013)

    Google Scholar 

  51. Hong, N.H., Sakai, J., Prellier, W.: Distribution of dopant in Fe:TiO2 and Ni:TiO2 thin films. J. Magn. Mag. Mater. 281, 347–352 (2004)

    Article  Google Scholar 

  52. Cernea, M., Valsangiacom, C., Truscaa, R., Vasiliu, F.: Synthesis of iron-doped anatase-TiO2 powders by a particulate sol-gel route. J. Optoelectr. Adv. Mater. 9, 2648 (2007)

    Google Scholar 

  53. Hung, W.-C., Chen, Y.-C., Chu, H., Tseng, T.-K.: Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane. Appl. Surf. Sci. 255, 2205–2213 (2008)

    Article  Google Scholar 

  54. Luu, C.L., Nguyen, Q.T., Ho, S.T., Tseng, T.-K.: Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method. Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 015008 (2010)

    Article  Google Scholar 

  55. da Santos, R.S., Faria, G.A., Giles, C., Leite, C.A.P., de Barbosa, H.S., Arruda, M.A.Z., Longo, C.: Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol–gel and hydrothermal method. ACS Appl. Mater. Interfaces 4, 5555 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC) Pakistan, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ikram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, R., Manzoor, M., Rafiq, A. et al. Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles. Electron. Mater. Lett. 14, 587–593 (2018). https://doi.org/10.1007/s13391-018-0060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0060-z

Keywords

Navigation