Skip to main content
Log in

Growth of bulk single crystals of urea for photonic applications

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report the growth of technologically important urea crystals of record size (48 × 16 × 8 mm3) by doping sulfuric acid and employing slow evaporation technique. The grown crystal was identified by single crystal X-Ray diffraction and FTIR spectral analysis. Optical properties of the grown crystal were analyzed by UV-Vis spectrum and the presence of H2SO4 was confirmed by EDAX analysis. Thermogravimetric analysis, Differential Scanning Calorimetry and Photo acoustic studies were also carried out to determine the thermal properties of the grown crystal. The dielectric properties for wide range of frequencies (1 Hz to 1 MHz) at different temperatures (35, 40, 60, 80, 100 °C) were analyzed. The second harmonic conversion efficiency of the grown H2SO4 doped urea crystal was found to be 3.75 times higher than the commercially available KDP crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, USA (1987).

    Google Scholar 

  2. T. Rajalakshmi, R. S. Qhalid Fareed, R. Dhanasekaran, P. Ramasamy, J. Thomas, and K. Srinivasan, Mater. Sci. Eng. B 39, 111 (1996).

    Article  Google Scholar 

  3. H. Bingrong, S. Genbo, and H. Youping, J. Cryst. Growth 102, 762 (1990).

    Article  Google Scholar 

  4. R. W. Munn and C. N. Ironside, Principles and Applications of Nonlinear Optical Materials, CRS Press, USA (1993).

    Book  Google Scholar 

  5. C. Cassidy, J. M. Halbout, W. Donaldson, and C. L. Tang, Opt. Commun. 29, 243 (1979).

    Article  Google Scholar 

  6. R. Docherty, K. J. Roberts, V. Saunders, S. Black, and R. J. Davey, Faraday Discuss. 95, 11 (1993).

    Article  Google Scholar 

  7. B. A. Garetz, J. E. Aber, N. L. Goddard, R. G. Young, and A. S. Myerson, Phys. Rev. Lett. 77, 16 (1996).

    Article  Google Scholar 

  8. H. Bingrong, S. Genbo, and P. Feng, J. Cryst. Growth 112, 729 (1991).

    Article  Google Scholar 

  9. S. Swaminathan, B. M. Craven, and R. K. McMullan, Acta Cryst. B 40, 300 (1984).

    Article  Google Scholar 

  10. D. Mullen and E. Hellner, Acta Cryst. B 34, 1624 (1978).

    Article  Google Scholar 

  11. A. Yoshihara and E. R. Bernstein, J. Chem. Phys. 77, 5319 (1982).

    Article  Google Scholar 

  12. T. Rajalakshmi, R. Dhanasekaran, and P. Ramasamy, J. Mater. Sci. Lett. 12, 1797 (1993).

    Article  Google Scholar 

  13. M. Tachibana, S. Horiuchi, J. S. Wang, and K. Kojima, J. Phys. D: Appl. Phys. 26, B145 (1993).

    Article  Google Scholar 

  14. P. Vaughan and J. Donohue, Acta Cryst. 5, 530 (1952).

    Article  Google Scholar 

  15. M. Mariappan, G. Madhurambal, B. Ravindran, and S. C. Mojumdar, J. Therm. Anal. Calorim. 104, 915 (2011).

    Article  Google Scholar 

  16. S. A. Martin Britto Dhas and S. Natrarajan, Opt. Commun. 281, 457 (2008).

    Article  Google Scholar 

  17. J. P. Chen and K. Isa, J. Mass Spectrom. Soc. Jpn. 46, 299 (1998).

    Article  Google Scholar 

  18. S. A. Martin Britto Dhas, M. Suresh, P. Raji, K. Ramachandran, and S. Natarajan, Cryst. Res. Technol. 42, 190 (2007).

    Article  Google Scholar 

  19. W. L. Barros Melo and R. M. Faria, Appl. Phys. Lett. 67, 3892 (1995).

    Article  Google Scholar 

  20. B. Behera, P. Nayak, and R. N. P. Choudhary, Mater. Res. Bull. 43, 401 (2008).

    Article  Google Scholar 

  21. P. Balamurugaraj, S. Suresh, P. Koteeswari, and P. Mani, J. Mater. Phy. & Chem. 1, 4 (2013).

    Google Scholar 

  22. G. Murugesan, R. Nithya, S. Kalainathan, and S. Hussain, RSC Adv. 5, 78414 (2015).

    Article  Google Scholar 

  23. M. H. Khan and S. Pal, Adv. Mat. Lett. 5, 384 (2014).

    Article  Google Scholar 

  24. L. Singh, U. S. Rai, K. D. Mandal, B. C. Sin, H.-I. Lee, H. Chung, and Y. Lee, Mater. Charact. 96, 54 (2014).

    Article  Google Scholar 

  25. S. A. Martin Britto Dhas, M. Suresh, G. Bhagavannarayana, and S. Natarajan, J. Cryst. Growth 309, 48 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathiyadhas Amalapusham Martin Britto Dhas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranraj, A., Dhas, S.S.J., Jose, M. et al. Growth of bulk single crystals of urea for photonic applications. Electron. Mater. Lett. 14, 7–13 (2018). https://doi.org/10.1007/s13391-017-7042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-7042-4

Keywords

Navigation