Skip to main content
Log in

In situ X-ray observation and simulation of ratcheting-fatigue interactions in solder joints

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Reflow voids created by solder oxidation reduce the reliability of lap joints. In situ visualization of reflow voids in Sn-3Ag-0.5Cu (SAC305) lap-shear solder joints under cyclic stressing was realized by X-ray computed tomography (CT), while the ratcheting deformation of the solder joints was monitored by a non-contact displacement detecting system (NDDS). The results revealed that the shape evolution of reflow voids in solder joints, as characterized by the sphericity of the voids, can be divided into three stages: i.e., the initial stage with a sharp drop, a stable stage, and a rapidly declining stage. A new evolution law for describing the progress of sphericity was proposed, and was further introduced into a viscoplastic constitutive model based on the OW-AF nonlinear kinematic hardening rule. The damage-coupled OW-AF model yielded an accurate estimation of the whole-life ratcheting behavior of Sn-3Ag-0.5Cu (SAC305) lap-shear solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Keller, D. Baither, U. Wilke, and G. Schmitz, Acta Mater. 59, 2731 (2011).

    Article  Google Scholar 

  2. L. Zhang, J. G. Han, C. W. He, and Y. H. Guo, J. Mater. Sci-Mater. Electron. 24, 172 (2012).

    Article  Google Scholar 

  3. L. Sun and L. Zhang, Adv. Mater. Sci. Eng. 2015, 1 (2015).

    Google Scholar 

  4. L. Sun, L. Zhang, S. J. Zhong, J. Ma, and L. Bao, J. Mater. Sci-Mater. Electron. 26, 9164 (2015).

    Article  Google Scholar 

  5. L. Jiang, N. Chawla, M. Pacheco, and V. Noveski, Mater. Charact. 62, 970 (2011).

    Article  Google Scholar 

  6. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  7. K. Sasaki and K. I. Ohguchi, J. Electron. Mater. 40, 2403 (2011).

    Article  Google Scholar 

  8. T. Kobayashi and K. Sasaki, J. Mater. Sci-Mater. Electron. 20, 2403 (2008).

    Google Scholar 

  9. H. Gao and X. Chen, Int. J. Fatigue 31, 276 (2009).

    Article  Google Scholar 

  10. T. Liang, Y. F. Liang, J. Y. Fang, G. Chen, and X. Chen, Int. J. Fatigue 67, 203 (2014).

    Article  Google Scholar 

  11. K. E. Yazzie, J. J. Williams, N. C. Phillips, F. D. Carlo, and N. Chawla, Mater. Charact. 70, 33 (2012).

    Article  Google Scholar 

  12. E. Padilla, V. Jakkali, L. Jiang, and N. Chawla, Acta Mater. 60, 4017 (2012).

    Article  Google Scholar 

  13. Y. Li, J. S. Moore, and B. Pathangey, IEEE T. Device Mater. Re. 12, 494 (2012).

    Article  Google Scholar 

  14. M. Abdel-Karim and N. Ohno, Int. J. Plasticity 16, 225 (2000).

    Article  Google Scholar 

  15. C. H. Lee, V. N. V. Do, and K. H. Chang, Int. J. Plasticity 62, 17 (2014).

    Article  Google Scholar 

  16. G. Chen, Z. S. Zhang, Y. H. Mei, X. Li, D. J. Yu, L. Wang, and X. Chen, Mech. Mater. 72, 61 (2014).

    Article  Google Scholar 

  17. Y. L. Zhu, G. Z. Kang, Q. H. Kan, and O. T. Bruhns, Int. J. Plasticity 54, 34 (2014).

    Article  Google Scholar 

  18. Y. Takahashi and Y. Tanaka, ASME Pressure Vessels and Piping Conference, p. 433, ASME, Pres. Ves. P., Toronto, Canada (2012).

    Google Scholar 

  19. S. Bari and T. Hassan, Int. J. Plasticity 17, 885 (2001).

    Article  Google Scholar 

  20. E. Corona, T. Hassan, and S. Kyriakides, Int. J. Plasticity 12, 117 (1996).

    Article  Google Scholar 

  21. S. Bari and T. Hassan, Int. J. Plasticity 16, 381 (2000).

    Article  Google Scholar 

  22. G. Z. Kang, Y. J. Liu, J. Ding, and Q. Gao, Int. J. Plasticity 25, 838 (2009).

    Article  Google Scholar 

  23. P. Lukáš, M. Klesnil, and J. Polák, Mater. Sci. Eng. 15, 239 (1974).

    Article  Google Scholar 

  24. G. Chen, L. Yu, Y. H. Mei, X. Li, X. Chen, and G. Q. Lu, Mater. Sci. Eng.-A. 591, 121 (2014).

    Article  Google Scholar 

  25. Y. L. Shen, N. Chawla, E. S. Ege, and X. Deng, Acta Mater. 53, 2633 (2005).

    Article  Google Scholar 

  26. C. Landron, O. Bouaziz, E. Maire, and J. Adrien, Scripta Mater. 63, 973 (2010).

    Article  Google Scholar 

  27. S. C. Wu, C. Yu, W. H. Zhang, Y. N. Fu, and L. Helfen, Sci. Technol. Weld Joi. 20, 11 (2015).

    Article  Google Scholar 

  28. E. Maire, T. Morgeneyer, C. Landron, J. Adrien, and L. Helfen, C. R. Phys. 13, 328 (2012).

    Article  Google Scholar 

  29. G. Z. Kang, Mech. Mater. 36, 299 (2004).

    Article  Google Scholar 

  30. D. Krajcinovic and G. U. Fonseka, J. Appl. Mech. 48, 809 (1981).

    Article  Google Scholar 

  31. J. L. Chaboche and P. Lesne, J. Fatigue Fract. Eng. Mater. Struct. 11, 1 (1988).

    Article  Google Scholar 

  32. S. A. Schroeder and M. R. Mitchell, ASTM STP. 1153, 42 (1994).

  33. Y. Wei, C. L. Chow, M. K. Neilsen, and H. E. Fang, Int. J. Numer. Meth. Eng. 56, 2199 (2003).

    Article  Google Scholar 

  34. Y. Yao, X. He, L. M. Keer, and M. E. Fine, Acta Mater. 83, 160 (2015).

    Article  Google Scholar 

  35. Y. X. Gao, J. Z. Yi, P. D. Lee, and T. C. Lindley, Acta Mater. 52, 5435 (2004).

    Article  Google Scholar 

  36. B. Q. Li, F. Yan, and X. Lu, Mater. Sci. Eng. A 534, 43 (2012).

    Article  Google Scholar 

  37. H. Shen and L. C. Brinson, Int. J. Solids Struct. 44, 320 (2007).

    Article  Google Scholar 

  38. Q. Yu, T. Shibutani, D. Kim, Y. Kobayashi, and J. Yang, Microelectron. Reliab. 48, 431 (2008).

    Article  Google Scholar 

  39. M. Yunus, K. Srihari, J. Pitaressi, and A. Primavera, Microelectron. Reliab. 43, 2077 (2003).

    Article  Google Scholar 

  40. J. Lau and S. Eramus, 52nd Electronic Components and Technology Conference (ECTC), p. 992, Electron. Comp. Tech. Conf., San Diego, USA (2002).

    Google Scholar 

  41. G. Z. Kang, Y. G. Li, J. Zhang Y. F. Sun, and Q. Gao, Theor. Appl. Fract. Mec. 42, 199 (2005).

    Article  Google Scholar 

  42. S. K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, J. Nucl. Mater. 401, 1 (2010).

    Article  Google Scholar 

  43. G. Z. Kang, Y. W. Dong Y. J. Liu, and H. Jiang, Mater. Chatact. 92, 26 (2014).

    Article  Google Scholar 

  44. G. Z. Kang and Y. J. Liu, Mater. Sci. Eng.-A. 472, 258 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Mei, Y., Chen, G. et al. In situ X-ray observation and simulation of ratcheting-fatigue interactions in solder joints. Electron. Mater. Lett. 13, 97–106 (2017). https://doi.org/10.1007/s13391-017-6018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6018-8

Keywords

Navigation