Skip to main content
Log in

Microwave losses of undoped n-type silicon and undoped 4H-SiC single crystals at cryogenic temperatures

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We investigated microwave losses of single-crystalline Si and 4H-SiC at cryogenic temperatures at 8.6–24 GHz using a method involving a dielectric resonator with high-T c superconductor YBa2Cu3O7-δ films used to improve the measurement sensitivity. The loss tangent of our undoped n-type Si appeared to be extremely low at temperatures below 20 K with a value of 1 × 10−6 at 24 GHz at 10 K, which is more than 100 times lower than the value of 2 × 10−4 at 6.8 GHz at 10 K reported by Krupka et al. [IEEE Trans. Microw. Theory Tech. 54, 3995 (2006)] for undoped p-type Si. Meanwhile, the loss tangent of pristine 4H-SiC appeared to be very high with a value of 0.01 at 10 K at 8.6 GHz, which is 4000 times higher than that of our undoped Si. When the pristine 4H-SiC was irradiated with thermal neutrons, the loss tangent was enhanced by seven times due to the significantly reduced electrical resistivity. Our results show that, at temperatures below 20 K, the loss tangent of undoped n-type Si is low enough for various cryogenic applications and that thermal neutron irradiation could provide a useful means of reducing the electrical resistivity of SiC possibly by means of neutron transmutation doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, Phys. Rev. Lett. 95, 210503 (2005).

    Article  Google Scholar 

  2. J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Clausen, and L. Jensen, IEEE Trans. Microwave Theory Tech. 54, 3995 (2006).

    Article  Google Scholar 

  3. A. D. O’Connell, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, C. McKenney, M. Neeley, H. Wang, E. M. Weig, A. N. Cleland, and J. M. Martinis, Appl. Phys. Lett. 92, 112903 (2008).

    Article  Google Scholar 

  4. J. G. Harnett, D. Mouneyrac, J. Krupka, H.-M. le Floch, M. E. Tobar, and D. Cros, J. Appl. Phys. 109, 064107 (2011).

    Article  Google Scholar 

  5. S. Chen, M. N. Afsar, and D. Sakdatorn, IEEE Trans. Instrum. Meas. 57, 706 (2008).

    Article  Google Scholar 

  6. J. W. Cleland, K. Lark-Horovitz, and J. C. Pigg, Phys. Rev. 78, 814 (1950).

    Article  Google Scholar 

  7. S. Prussin and J. W. Cleland, J. Electrochem. Soc. 125, 350 (1978).

    Article  Google Scholar 

  8. Y. Kobayash and H. Yoshikawa, IEEE Trans. Microw. Theory Tech. 46, 2524 (1998).

    Article  Google Scholar 

  9. J. Mazierska, J. Supercond. 10, 73 (1997).

    Article  Google Scholar 

  10. S. Y. Lee, J. H. Lee, J. H. Lee, J. S. Ryu, J. Lim, S. H. Moon, H. N. Lee, H. G. Kim, and B. Oh, Appl. Phys. Lett. 79, 3299 (2001).

    Article  Google Scholar 

  11. J. H. Lee, W. I. Yang, M. J. Kim, J. C. Booth, K. Leong, S. Schima, D. Rudman, and S. Y. Lee, IEEE Trans. Appl. Supercond. 15, 3700 (2005).

    Article  Google Scholar 

  12. International Electrotechnical Commission, International standard IEC 61788-15 ed. 1, (2009).

    Google Scholar 

  13. See http://www.crystec.de/crystec-d.html for more details.

  14. Y. M. Tairov and V. F. Tsvetkov, J. Crystal Growth. 43, 209 (1978).

    Article  Google Scholar 

  15. M. S. Schnoller, IEEE Trans. Electron Dev. 21, 313 (1974).

    Article  Google Scholar 

  16. D. M. Pozar, Microwave Engineering, John Wiley & Sons, New York, U.S.A (1998).

    Google Scholar 

  17. J.-H. Choi, S.-H. Jang, and J.-S. Jang, Electron. Mater. Lett. 9, 425 (2013).

    Article  Google Scholar 

  18. D. H. Kim and S. H. Lee, Electron. Mater. Lett. 9, 677 (2013).

    Article  Google Scholar 

  19. S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, Appl. Phys. Lett. 98, 172510 (2011).

    Article  Google Scholar 

  20. B. I. Shiklovskii, and A. L. Efros, Electronic Properties of Doped Semiconductors, p. 74, Springer-Verlag, Berlin, Germany (1984).

    Google Scholar 

  21. K. J. Kim, K.-Y. Lim, Y.-W. Kim, and H.-C. Kim, J. Am. Ceram. Soc. 96, 2525 (2013).

    Article  Google Scholar 

  22. K. J. Kim, K.-Y. Lim, and Y.-W. Kim, J. Eur. Ceram. Soc. 32, 4401 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Young Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H.S., Yang, W.I., Cho, M.S. et al. Microwave losses of undoped n-type silicon and undoped 4H-SiC single crystals at cryogenic temperatures. Electron. Mater. Lett. 10, 541–549 (2014). https://doi.org/10.1007/s13391-014-4017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4017-6

Keywords

Navigation