Skip to main content
Log in

Surface enhanced Raman spectroscopy on silver-nanoparticle-coated carbon-nanotube networks fabricated by electrophoretic deposition

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, the efficiency of silver nanoparticle (AgNP) decorated carbon nanotube (CNT) based porous substrates has been investigated for surface-enhanced Raman spectroscopy (SERS) applications. The fabrication of uniform thin coatings of carbon nanotubes is accomplished by Electrophoretic Deposition (EPD) on organosilane functionalized silicon substrates. The deposition process exemplifies a fast, reproducible and single-step room temperature coating strategy to fabricate horizontally aligned porous CNT network. Surfactant stabilized AgNPs were deposited on the CNT networks by immersion coating. The acquired Raman spectra of Rhodamine6G (R6G) analyte examined on the fabricated Ag-CNT-Si substrates exhibited enhanced signal intensity values when compared to SERS-active planar AgNP-Si substrates. An overall enhancement factor of ∼109 was achieved for the tested analyte which enables pushing the limit of detection to 1 × 10−12 M (1 pM). The enhancement can be attributed to the large surface area offered by the AgNP-CNT porous network, which is expected to increase the number of effective “hot spots” for the SERS effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, p. 1–1044, CRC Press, New York (2001).

    Google Scholar 

  2. A. Kudelski, Talanta 76, 1 (2008).

    Article  Google Scholar 

  3. Z. Movasaghi, S. Rehman, and I. U. Rehman, Applied Spectroscopy Reviews 42, 493 (2007).

    Article  Google Scholar 

  4. W. L. Peticolas, Biochimie 57, 417 (1975).

    Article  Google Scholar 

  5. S. Das, Chemical Geology 290, 101 (2011).

    Article  Google Scholar 

  6. D. Bersani and J. M. Madariaga, J. Raman Spectrosc. 43, 1523 (2012).

    Article  Google Scholar 

  7. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Ann. Rev. Anal. Chem. 1, 601 (2008).

    Article  Google Scholar 

  8. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman Scattering: Physics and Applications, p. 1–460, Springer, New York, 2006.

    Book  Google Scholar 

  9. M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).

    Article  Google Scholar 

  10. L.-Q. Lu, Y. Zheng, W.-G. Qu, H.-Q. Yu, and A.-W. Xu, J. Mater. Chem. 22, 20986 (2012).

    Article  Google Scholar 

  11. S. J. Lee, Z. Guan, H. Xu, and M. Moskovits, J. Phys. Chem. C 111, 17985 (2007).

    Article  Google Scholar 

  12. M. J. Weaver, S. Zou, and H. Y. Chan, Anal. Chem. 72, 38A (2000).

    Article  Google Scholar 

  13. H. Ko, S. Singamaneni, and V. V. Tsukruk, Small 4, 1576 (2008).

    Article  Google Scholar 

  14. X.-M. Lin, Y. Cui, Y.-H. Xu, B. Ren, and Z.-Q. Tian, Anal. Bioanal. Chem. 394, 1729 (2009).

    Article  Google Scholar 

  15. X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, IEE Proc. Nanobiotechnol. 152, 195 (2005).

    Article  Google Scholar 

  16. Y.-C. Liu, C.-C. Wang, and J.-F. Tsai, Anal. Chim. Acta 584, 433 (2007).

    Article  Google Scholar 

  17. J.-C. Bian, Z. Li, Z.-D. Chen, H.-Y. He, X.-W. Zhang, X. Li, and G.-R. Han, Appl. Surf. Sci. 258, 1831 (2011).

    Article  Google Scholar 

  18. Y. Lu, G. Xue, and J. Dong, Appl. Surf. Sci. 68, 485 (1993).

    Article  Google Scholar 

  19. I. Talian, K. B. Mogensen, A. Ori ák, D. Kaniansky, and J. Hübner, J. Raman Spectrosc. 40, 982 (2009).

    Article  Google Scholar 

  20. Z. Pan, A. Zavalin, A. Ueda, M. Guo, M. Groza, A. Burger, R. Mu, and S. H. Morgan, Appl. Spectrosc 59, 782 (2005).

    Article  Google Scholar 

  21. M. Figueroa, K. Pourrezaei, and S. Tyagi, AIP Conference Proceedings 1461, 47 (2012).

    Article  Google Scholar 

  22. D. M. Kuncicky, B. G. Prevo, and O. D. Velev, J. Mater. Chem. 16, 1207 (2006).

    Article  Google Scholar 

  23. H. Ko, S. Chang, and V. V. Tsukruk, ACS Nano 3, 181 (2009).

    Article  Google Scholar 

  24. A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, Appl. Surf. Sci. 256, 6969 (2010).

    Article  Google Scholar 

  25. L. Zeiri, K. Rechav, Z. Porat, and Y. Zeiri, Appl. Spectrosc. 66, 294 (2012).

    Article  Google Scholar 

  26. X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, Nanotechnology 23, 205702 (2012).

    Article  Google Scholar 

  27. N. Hideyuki, O. Norio, H. Kenji, S. Keiji, I. Toru, I. Yasushi, K. Nobuyuki, and Y. Hiroshi, J. Ceram. Soc. Jpn. 114, 36 (2006).

    Article  Google Scholar 

  28. L. Beqa, A. K. Singh, Z. Fan, D. Senapati, and P. C. Ray, Chem. Phys. Lett. 512, 237 (2011).

    Article  Google Scholar 

  29. W. F. Jiang, Y. F. Zhang, Y. S. Wang, L. Xu, and X. J. Li, Appl. Surf. Sci. 258, 1662 (2011).

    Article  Google Scholar 

  30. H. Zhao, H. Fu, C. Tian, Z. Ren, and G. Tian, J. Colloid. Interf. Sci. 351, 343 (2010).

    Article  Google Scholar 

  31. L. Besra and M. Liu, Prog. Mater. Sci. 52, 1 (2007).

    Article  Google Scholar 

  32. J. J. Van Tassel and C. A. Randall, Key Engineering Materials 314, 167 (2006).

    Article  Google Scholar 

  33. O. O. Van der Biest and L. J. Vandeperre, Ann. Rev. Mater. Sci. 29, 327 (1999).

    Article  Google Scholar 

  34. A. Sarkar and T. Daniels-Race, Nanomaterials, 3, 272 (2013).

    Article  Google Scholar 

  35. C. Wang, J. Zhang, K. Ryu, A. Badmaev, L. G. De Arco, and C. Zhou, Nano Lett. 9, 4285 (2009).

    Article  Google Scholar 

  36. M. H. Andrew Ng, L. T. Hartadi, H. Tan, and C. H. Patrick Poa, Nanotechnology 19, 205703 (2008).

    Article  Google Scholar 

  37. J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 303, 125 (1999).

    Article  Google Scholar 

  38. J. GarcÍa-Barrasa, J. M. López-de-Luzuriaga, and M. Monge, Cent. Eur. J. Chem. 9, 7 (2011).

    Article  Google Scholar 

  39. P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).

    Article  Google Scholar 

  40. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, Carbon 46, 833 (2008).

    Article  Google Scholar 

  41. K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, and H. Honda, Carbon 34, 279 (1996).

    Article  Google Scholar 

  42. T. Saito, K. Matsushige, and K. Tanaka, Physica B: Condensed Matter 323, 280 (2002).

    Article  Google Scholar 

  43. Y.-C. Tsai, P.-C. Hsu, Y.-W. Lin, and T.-M. Wu, Electrochem. Commun. 11, 542 (2009).

    Article  Google Scholar 

  44. Z. Zeng, X. Zhou, X. Huang, Z. Wang, Y. Yang, Q. Zhang, F. Boey, and H. Zhang, Analyst 135, 1726 (2010).

    Article  Google Scholar 

  45. L. Qu and L. Dai, J. Am. Chem. Soc. 127, 10806 (2005).

    Article  Google Scholar 

  46. J. Kathi, K.-Y. Rhee, and J. H. Lee, Compos. Pt. A-Appl. Sci. Manuf. 40, 800 (2009).

    Article  Google Scholar 

  47. C. Velasco-Santos, Nanotechnology 13, 495 (2002).

    Article  Google Scholar 

  48. J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, Nano Lett. 6, 2225 (2006).

    Article  Google Scholar 

  49. I. W. Sztainbuch, J. Chem. Phys. 125, 124707 (2006).

    Article  Google Scholar 

  50. A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, J. Phys. Chem. B 108, 19191 (2004).

    Article  Google Scholar 

  51. Y.-C. Chen, R. J. Young, J. V. Macpherson, and N. R. Wilson, J. Raman Spectrosc. 42, 1255 (2011).

    Article  Google Scholar 

  52. H.-H. Wang, C.-Y. Liu, S.-B. Wu, N.-W. Liu, C.-Y. Peng, T.-H. Chan, C.-F. Hsu, J.-K. Wang, and Y.-L. Wang, Adv. Mater. 18, 491 (2006).

    Article  Google Scholar 

  53. P. H. C. Camargo, L. Au, M. Rycenga, W. Li, and Y. Xia, Chem. Phys. Lett. 484, 304 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theda Daniels-Race.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Wang, H. & Daniels-Race, T. Surface enhanced Raman spectroscopy on silver-nanoparticle-coated carbon-nanotube networks fabricated by electrophoretic deposition. Electron. Mater. Lett. 10, 325–335 (2014). https://doi.org/10.1007/s13391-013-3147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3147-6

Keywords

Navigation