Skip to main content
Log in

Ruin probabilities for a regenerative Poisson gap generated risk process

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is defined for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F. Asymptotic expressions for the infinite horizon ruin probabilities are given for both light- and the heavy-tailed cases. A basic observation is that the process regenerates at each G-claim. Also an approach via Markov additive processes is outlined, and heuristics are given for the distribution of the time to ruin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecher H, Asmussen S (2006) Ruin probabilities and aggregate claims distributions for shot noise Cox processes. Scand Actuar J 2006:86–110

    Article  MATH  MathSciNet  Google Scholar 

  2. Albrecher H, Boxma O (2004) A ruin model with dependence between claim sizes and claim intervals. Insurance Math Econom 35:245–254

    Article  MATH  MathSciNet  Google Scholar 

  3. Asimit V, Badescu A (2010) Extremes on the discounted aggregate claims in a time dependent risk model. Scand Actuar J 2010:93–104

    Article  MATH  MathSciNet  Google Scholar 

  4. Asmussen S (2003) Applied probability and queues, 2nd edn. Springer, Berlin

  5. Asmussen S, Albrecher H (2010) Ruin probabilities, 2nd edn. World Scientific, New Jersey

  6. Asmussen S, Klüppelberg C (1996) Large deviations results for subexponential tails, with applications to insurance risk. Stoch Proc Appl 64:103–125

    Article  MATH  Google Scholar 

  7. Asmussen S, Schmidli H, Schmidt V (1999) Tail approximations for non-standard risk and queueing processes with subexponential tails. Adv Appl Probab 31:422–447

    Article  MATH  MathSciNet  Google Scholar 

  8. Balkema G, de Haan L (1974) Residual life-time at great age. Ann Probab 2:792–804

    Article  MATH  Google Scholar 

  9. Biard R, Lefevre C, Loisel C, Nagaraja H (2010) Asymptotic finite-time ruin probabilities for a class of path-dependent heavy-tailed claim amounts using Poisson spacings. Appl Stoch Models Bus Ind (to appear)

  10. Boudreault M, Cossette H, Landriault D, Marceau E (2006) On a risk model with dependence between interclaim arrivals and claim sizes. Scand Actuar J 2006:265–285

    Article  MATH  MathSciNet  Google Scholar 

  11. Daley DJ (ed) (2001) Probability, statistics and seismology. A festschrift for David Vere-Jones. J Appl Probab Spec Vol 38A

  12. Duffield NG, O’Connell N (1995) Large deviations and overflow probabilities for the general single-server queue, with applications. Math Proc Camb Philos Soc 118:363–374

    Article  MATH  MathSciNet  Google Scholar 

  13. Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extreme events for insurance and finance. Springer, Berlin

  14. Foss S, Korshunov D, Zachary S (2009) An introduction to heavy-tailed and subexponential distributions. Oberwolfach Preprints (OWP) 2009-13

  15. Foss S, Palmowski Z, Zachary S (2005) The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk. Ann Appl Probab 15:1936–1957

    Article  MATH  MathSciNet  Google Scholar 

  16. Foss S, Konstantopoulos T, Zachary S (2007) Discrete and continuous time modulated random walks with heay-tailed increments. J Theor Probab 20:581–612

    Article  MATH  MathSciNet  Google Scholar 

  17. Glynn PW, Whitt W (1994) Logarithmic asymptotics for steady-state tail probabilities in a single-server queue. In: Galambos J, Gani J (eds) Studies in applied probability. J Appl Probab 31A:131–156

  18. Jelenković P, Momcilović P, Zwart B (2004) Reduced load equivalence under subexponentiality. QUESTA 46:97–112

    MATH  Google Scholar 

  19. Li J, Tang Q, Wu R (2010) Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model. Adv Appl Probab 42:1126–1146

    Article  MATH  MathSciNet  Google Scholar 

  20. Resnick S (1987) Extreme values, regular variation, and point processes. Springer, Berlin

  21. Schmidli H (1997) An extension to the renewal theorem and an application in risk theory. Ann Appl Probab 7:121–133

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Biard.

Appendix

Appendix

1.1 1. Regenerative calculations for k > 2

Now, let us prove that for k ≥ 2,

$$ \mu^{(k)} = \frac{{\hbox{e}}^{\lambda r}}{\lambda} \frac{{\hbox{e}}^{\lambda k r}-1}{{\hbox{e}}^{\lambda r}-1}, $$
(36)

where μ(k) is the mean of the cycle length in the k-case, which we denote a k-cycle. For k = 2, we can easily check that

$$ \frac{1}{\lambda} {\hbox{e}}^{\lambda r}(1+{\hbox{e}}^{\lambda r}) = \frac{{ \hbox{e}}^{\lambda r}}{\lambda} \frac{{\hbox{e}}^{\lambda 2 r}-1}{{\hbox{e}}^{\lambda r}-1}. $$

We assume now the result holds for some k ≥ 2. After a k-cycle, we have two possibilities. The next interarrival time is long and we get a (k + 1)-cycle. This gives an additional contribution to the mean of a (k + 1)-cycle length of p + m +. The second possibility is that the next interarrival time is short and the (k + 1)-cycle starts afresh after that. Putting things together gives

$$ \mu^{(k+1)} = \mu^{(k)} + p_+m_+ + p_-(m_-+\mu^{(k+1)}) $$

so that

$$ \begin{aligned} \mu^{(k+1)} &\; =\; \frac{1}{p_+} \left[ \mu^{(k)} + p_+m_+ + p_-m_- \right] \; =\; {\hbox{e}}^{\lambda r} \left[ \frac{{\hbox{e}}^{\lambda r}}{\lambda} \frac{{\hbox{e}}^{\lambda k r}-1}{{\hbox{e}}^{\lambda r}-1} + \frac{1}{\lambda} \right],\\ &\; =\; \frac{{\hbox{e}}^{\lambda r}}{\lambda} \frac{{\hbox{e}}^{\lambda (k+1) r}-1}{{\hbox{e}}^{\lambda r}-1}, \end{aligned} $$

which ends the proof.

1.2 2. Light-tailed calculations for k > 2

Here, let us prove that, for k > 2,

$$ \varphi^{(k)}(\alpha,\beta) = \frac{g(\alpha,\beta)^k\widehat{F} [\alpha]^{k-1}\widehat{G}[\alpha]}{1-k(\alpha,\beta)\widehat{F}[\alpha] [1-(g(\alpha,\beta)\widehat{F}[\alpha])^k ]/[1-g(\alpha,\beta)\widehat{F}[\alpha]]}, $$

where

$$ \begin{aligned} g(\alpha,\beta) &\; =\; \frac{\lambda}{\lambda+c\alpha-\beta} {\hbox{e}}^{(\beta-c\alpha-\lambda)r},\\ k(\alpha,\beta) &\; =\; \frac{\lambda}{\lambda+c\alpha-\beta} (1-{\hbox{e}}^{(\beta-c\alpha-\lambda)r}), \end{aligned} $$

and \({\varphi^{(k)}(\alpha,\beta) = {\mathbb E}\left[{\hbox{e}}^{\alpha S(\omega)}{\hbox{e}}^{\beta \omega}\right]}\) in the k-case. We use the same notation as in Sect. 5 A (k > 2)-cycle begins as a (k = 2)-cycle with some short interarrival times, each followed by an F-claim with contribution to \(\varphi^{(k)}(\alpha,\beta)\) equals to

$$ \frac{p_+}{1-p_-\widehat F[\alpha]\widehat A^-[\beta-c\alpha]}, $$

followed by a long interarrival time and an F-claim which gives a contribution of

$$ \widehat F[\alpha] \widehat A^+[\beta-c\alpha]. $$

After that, there are k possible paths. One path is constituted with k − 1 long interarrival times. The first k − 2 times are followed by an F-claim and the last one by a G-claim and so the cycle terminates. This path has a probability p k–1+ to occur and gives a contribution of

$$ \left(p_+A^+[\beta-c\alpha]\right)^{k-1}\widehat{F} [\alpha]^{k-2}\widehat{G}[\alpha]. $$

For 0 ≤ i ≤ k − 2, the i-path is constituted with i long interarrival times and one short time, each followed by an F-claim, then the cycle starts afresh after that. The i-path occurs with probability p i+ p and gives a contribution of

$$ {p_+}^ip_- \widehat{F}[\alpha]^{i+1} A^+[\beta-c\alpha]^i A^-[\beta-c\alpha] \varphi^{(k)}(\alpha,\beta). $$

Putting things together gives

$$ \begin{aligned} \varphi^{(k)}(\alpha,\beta)&=\frac{p_+}{1-p_-\widehat F [ \alpha ] \widehat A^- [ \beta-c\alpha ]} F [ \alpha ] \widehat A^+ [ \beta-c\alpha ] \times \left(\vphantom{\sum_{i=0}^{k-2} {p_+}^ip_- \widehat{F}}\left(p_+A^+ [ \beta-c\alpha ] \right)^{k-1} \widehat{F} [ \alpha ] ^{k-2}\widehat{G} [ \alpha ]\right.\\ &\qquad\left.+\sum_{i=0}^{k-2} {p_+}^ip_- \widehat{F}[\alpha]^{i+1} A^+ [ \beta-c\alpha ] ^i A^- [ \beta-c\alpha ] \varphi^{(k)}(\alpha,\beta) \right), \end{aligned} $$

which ends the proof.

1.3 3. Proof of Eqs. 2327

The expression Eq. 23 for h θ(−, 0) is just Proposition 5.1.

To compute h θ(i) for all i, we first introduce some notation, with V an exponential random variable with rate λ:

$$ \begin{aligned} p_{(a)+}&={\mathbb P}\left( V > r-a \right)={\hbox{e}}^{-\lambda (r-a)} \;,\\ p_{(a)-}&={\mathbb P}\left( V \le r-a \right)= 1- {\hbox{e}}^{-\lambda (r-a)} \;,\\ \widehat A [\alpha] &={\mathbb E}\left[ {\hbox{e}}^{\alpha V} \right] = \frac{\lambda}{\lambda+\alpha},\\ \widehat A^{(a)+}[\alpha] &={\mathbb E}\left[ {\hbox{e}}^{\alpha V} \big| V > r-a \right]=\frac{\lambda}{\lambda-\alpha}{\hbox{e}}^{\alpha (r-a)} \;, \\ \widehat A^{(a)-}[\alpha]&={\mathbb E}\left[ {\hbox{e}}^{\alpha V} \big| V \le r-a \right] = \frac{\lambda}{\lambda-\alpha}\left(\frac{1-{\hbox{e}}^{-(\lambda-\alpha) (r-a)}}{1-{\hbox{e}}^{-\lambda (r-a)}}\right)\;, \end{aligned} $$

and we are using p +p A +[α] and A [α] defined in Sects. 3, 5.

The easiest case is the (+,  +)-one. Actually, after an exponential time, a G-claim occurs which ends the cycle, so

$$ \begin{aligned} h^{\theta}(+,+) &={\mathbb E}_{(+,+)} {\hbox{e}}^{\theta S(\omega_1) - \kappa(\theta)\omega_1} ={\mathbb E} {\hbox{e}}^{-(c\theta+\kappa(\theta))V}{\hbox{e}}^{U_G}\\ &=\widehat{A}[-c\theta - \kappa(\theta)] \widehat{G}[\theta]= \frac{\lambda}{\lambda+c\theta+\kappa(\theta)} \widehat{G}[\theta]. \end{aligned} $$

For the (+, a)-case, two cases have to be considered. If the exponential time before the first claim is larger than r − a then a G-claim occurs, otherwise, an F-claim occurs and the state becomes (−, 0):

$$ \begin{aligned} h^{\theta}(+,a) &={\mathbb E}_{(+,a)} {\hbox{e}}^{\theta S(\omega_1) - \kappa(\theta)\omega_1},\\ &=p_{(a)-} \widehat A^{(a)-}[-c\theta-\kappa(\theta)] \widehat{F}[\theta] h^{\theta}(-,0) \\ & \quad + p_{(a)+} \widehat A^{(a)+}[-c\theta-\kappa(\theta)] \widehat{G}[\theta]\\ &=\frac{k^{(a)}(\theta,-\kappa(\theta)) g(\theta,-\kappa(\theta))^2 \widehat{F}[\theta]^2\widehat{G}[\theta]}{1-k(\theta,-\kappa(\theta)) \widehat{F}[\theta]\left(1+g(\theta,-\kappa(\theta)) \widehat{F}[\theta]\right)}\\ & \quad + g^{(a)}(\theta,-\kappa(\theta))\widehat{G}[\theta]. \end{aligned} $$

The particular case (+, 0) gives

$$ \begin{aligned} h^{\theta}(+,0) &=k^{(0)}(\theta,-\kappa(\theta)) h^{\theta}(-,0) + g^{(0)}(\theta,-\kappa(\theta))\\ &=\frac{g(\theta,-\kappa(\theta)) \widehat{G}[\theta]\left(1-k(\theta,-\kappa(\theta)) \widehat{F}[\theta]\right)}{1-k(\theta,-\kappa(\theta)) \widehat{F}[\theta]\left(1+g(\theta,-\kappa(\theta)) \widehat{F}[\theta]\right)}. \end{aligned} $$

The (−,  +)-case can be easily solved using the (+, 0) one. Actually, after an exponential time, an F-claim occurs and the state becomes (+, 0):

$$ \begin{aligned} h^{\theta}(-,+) &={\mathbb E}_{(-,+)} {\hbox{e}}^{\theta S(\omega_1) - \kappa(\theta)\omega} = \widehat{A}[-c\theta - \kappa(\theta)] \widehat{F}[\theta] h^{\theta}(+,0)\\ & =\frac{\lambda}{\lambda+c\theta+\kappa(\theta)} \frac{g(\theta,-\kappa(\theta))\widehat{F} [\theta]\widehat{G}[\theta]\left(1-k(\theta,-\kappa(\theta)) \widehat{F}[\theta]\right)}{1-k(\theta,-\kappa(\theta)) \widehat{F}[\theta]\left(1+g(\theta,-\kappa(\theta)) \widehat{F}[\theta]\right)}. \end{aligned} $$

We solve the (−, a)-case using both (+, 0) and (−, 0) ones. If the exponential time before the first claim is larger than r − a, then an F-claim occurs and the state becomes (+, 0), otherwise, an F-claim occurs and the state becomes (−, 0):

$$ \begin{aligned} h^{\theta}(-,a) &={\mathbb E}_{(-,a)} {\hbox{e}}^{\theta S(\omega_1) - \kappa(\theta)\omega_1},\\ &=p_{(a)-} \widehat A^{(a)-}[-c\theta-\kappa(\theta)] \widehat{F}[\theta] h^{\theta}(-,0)\\ & \quad + p_{(a)+} \widehat A^{(a)+} [ -c\theta-\kappa(\theta) ] \widehat{F} [ \theta ] h^{\theta}(+,0),\\ &=\frac{g(\theta,-\kappa(\theta))\widehat{F} [ \theta ] \widehat{G} [ \theta ] }{1-k\left(\theta,-\kappa(\theta)\right) \widehat{F} [ \theta ] \left(1+g\left(\theta,-\kappa(\theta)\right) \widehat{F} [ \theta ] \right)} \quad \times \left\{k^{(a)}(\theta,-\kappa(\theta))g(\theta,-\kappa(\theta)) \widehat{F} [ \theta ]\right.\\ &\quad\left.+g^{(a)}\left(\theta,-\kappa(\theta)\right)\widehat{G} [ \theta ] \left(1-k\left(\theta,-\kappa(\theta)\right) \widehat{F} [ \theta ] \right)\right\}. \end{aligned} $$

1.4 4. A counterexample

We give here an example of random variables XY such that X is subexponential and Y light-tailed, but the tail of X − Y is lighter than the tail of X (of course, such r.v.’s have to be dependent).

We take X with tail \(\overline F(x) = { \hbox{e}}^{-x/\log x}, x>{\hbox{e}}.\) Then the density and failure rates are

$$ f(x) = \left[\frac{1}{\log x}-\frac{1}{\log^2 x}\right]{\hbox{e}}^{-x/\log x},\ \hbox{resp.} \,\lambda(x)=\frac{f(x)}{\overline F(x)}=\frac{1}{\log x}-\frac{1}{\log^2 x}. $$

The integral to be inspected for Pitman’s criterion [p. 299, 5] is

$$ \int_{\hbox{e}}^\infty {\hbox{e}}^{x\lambda (x)}f(x) {\hbox{d}} x = \int_{\hbox{e}}^\infty{\hbox{e}}^{-x/\log^2 x}\left[\frac{1}{\log x}-\frac{1}{\log^2 x}\right] {\hbox{d}} x, $$

which is finite so that X is subexponential.

Let \(Y=\varphi(X)=X/\log X\) and note that whenever \(z<\varphi^{-1}(x), \) i.e. \(\varphi(z)<x, \) then

$$ {\mathbb P}(Y>x)={\mathbb P}\left(X>\varphi^{-1}(x)\right) \le {\mathbb P}(X>z). $$

Taking z = z(x) = x log x, we have

$$ \varphi(z)=\frac{x\log x}{\log x+\log\log x} < x . $$

and thus

$$ {\mathbb P}(Y>x) \le {\mathbb P}(X>z)=\exp\left\{-x\log x/[\log x+\log\log x]\right\} < {\hbox{e}}^{-x/2} $$

for all large x. Thus Y is light-tailed.

Let 0 < b < a < 1 and note that X − Y = ψ(X) = X(1 − 1/log X). Taking z = z(x) = x + ax/log x, we get

$$ \psi(z) = (x+ax/\log x)\left[1-\frac{1}{\log x\left[1+\log(1+a/\log x)/\log x\right]}\right] < x $$

for large x (using a < 1), and thus as above,

$$ {\mathbb P}(X-Y>x) \le {\mathbb P}(X>z)={\hbox{e}}^{-z/\log z}. $$

Now

$$ \begin{aligned} \frac{z}{\log z}=&\frac{x+ax/\log x}{\log x\left[1+\log(1+a/\log x)/\log x\right]}\\ \ge& \frac{x+ax/\log x}{\log x}\left[1-\left[1+\log(1+a/\log x)/\log x\right]\right] \\ \ge&\frac{x}{\log x}+\frac{bx}{\log^2 x} \end{aligned} $$

for all large x (using (1 + v)−1 > 1 − v in the second step). Thus

$$ {\mathbb P}(X-Y>x) \le {\mathbb P}(X>x){\hbox{o}}(1), $$

and the counterexample is complete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmussen, S., Biard, R. Ruin probabilities for a regenerative Poisson gap generated risk process. Eur. Actuar. J. 1, 3–22 (2011). https://doi.org/10.1007/s13385-011-0002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-011-0002-8

Keywords

Navigation