Skip to main content
Log in

Hyers–Ulam stability of a functional equation with several parameters

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

We consider the functional equation:

$$\begin{aligned} \sum _{i=1}^{m}f(a_i x_0 + b_i x_i) + f\left( x_0 - \sum _{i=1}^{m}b_i x_i\right) = f(x_0), \end{aligned}$$
(1)

where \(m \ge 2\) is an integer, \((a_i)_{i=1, \dots , m}\) and \((b_i)_{i=1, \dots , m}\) are scalars so that \(\sum _{i=1}^m a_i = 0\) and \(b_i \ne 0\) for every \(i = 1, \dots , m\). We prove the Hyers–Ulam stability of (1) under several kinds of approximation conditions and with different methods. Unlike most of authors, when using the fixed point theorem method, we use the classical Banach contraction principle instead of the alternative fixed point theorem. We then combine (1) with some other equations and show the stability of the obtained systems. In particular, we get the stability of left (right) multipliers, ring morphisms, ring antimorphisms, Lie morphisms, Lie derivation, ring n-derivations, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbaspoura, G., Rahmani, A.: Hyers–Ulam–Rassias and Ulam–Gavruta–Rassias stability of generalized quadtratic functional equations. Adv. Appl. Math. Anal. 4(1), 31–38 (2009)

    Google Scholar 

  2. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackadar, B.: Operator algebras, theory of \({\mathbb{C}}^*\)-algebras and von Neumann algebras. In: Encyclopedia of Matheatical Sciences, vol. 122. Springer, New York (2006)

  4. Bourgin, D.G.: Approximately isometric and multiplicative transformations on continuous function rings. Duke Math. J. 16, 385–397 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzdȩk, J., Fo\(\check{{\rm s}}\)ner, A.: On approximate generalized Lie derivations. Glas. Mat. 50(1), 77–99 (2015)

  6. Cadariu, L., Radu, V.: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346, 43–52 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Cadariu, L., Radu, V.: Fixed points and the stability of the Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4(1), Article 4, p. 7 (2003)

  8. Cho, Y.J., Park, C., Rassias, T.M., Saadaty, R.: Stability of Functional Equations in Banach Algebras. Springer, New York (2015). ISBN 978-3-319-18707-5

  9. Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eshaghi Gordji, M., Karimi, T., Kaboli Gharetapeh, S.: Approximately \(n\)-Jordan homomorphisms on Banach algebras. J. Inequal. Appl. 2009, Article ID 870843, p. 8 (2009)

  11. Eshaghi Gordji, M., Ghobadipour, N., Park, C.: Jordan *-homomorphisms between unital \({\mathbb{C} }^*\)-algebras. Commun. Korean Math. Soc. 27(1), 149–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. G\(\breve{{\rm a}}\)vrota, P.: A generalisation of the Heyrs–Ulam–Rassias stability of approximatively additive. J. Math. Anal. Appl. 184, 431–436 (1994)

  13. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jun, K.W., Jung, S.M., Lee, Y.H.: A generalisation of the Hyers–Ulam–Rassias stability of functional equation of Davison. J. Korean Math. Soc. 41(3), 501–511 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jun, K.W., Kim, H.M.: Remarks on the stability of additive functional equation. Bull. Korean Math. Soc. 38(4), 679–687 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Jun, K.W., Kim, H.M., Rassias, J.M.: Extended Hyers–Ulam stability for Cauchy–Jensen mapping. J. Differ. Equ. Appl. 13(12), 1139–1153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jung-Rye, L., Yun, S.D.: Isomorphisms and derivations in \(C^*\)-algebras. Acta Math. Sci. 31(1), 309–320 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miura, T., Takahasi, S.E., Hirasawa, G.: Hyers–Ulam–Rassias stability of Jordan homomorphisms on Banach algebras. J. Inequal. Appl. 4, 435–441 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Moslehian, M.S.: Hyers–Ulam–Rassias stability of generalized derivations. Int. J. Math. Math. Sci. Article ID 93942, 1–8 (2006)

  20. Oubbi, L.: Ulam–Hyers–Rassias stability for several kinds of mappings. Afr. Mat. 24, 525–542 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Oubbi, L.: Hyers–Ulam stability of mappings from a ring \(A\) into an \(A\)-bimodule. Commun. Korean Math. Soc. 28, 767–782 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Park, K.H., Jung, Y.S.: Stability of a functional equation obtained by combining two functional equations. J. Appl. Math. Comput. 14(1–2), 415–422 (2004)

    Google Scholar 

  23. Park, C., Rassias, J.M.: Stability of the Jensen-type functional equation in \({\mathbb{C}}^*\)-algebras: a fixed point approch. Abstr. Appl. Anal. 2009, Article ID 360432, p. 17 (2009)

  24. Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4, 91–96 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rassias, T.M.: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62(1), 23–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ulam, S.M.: Problems in Modern Mathematics, vol. VI, science edn. Wiley, New York (1940)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahbib Oubbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oubbi, L. Hyers–Ulam stability of a functional equation with several parameters. Afr. Mat. 27, 1199–1212 (2016). https://doi.org/10.1007/s13370-016-0403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-016-0403-6

Keywords

Mathematics Subject Classification

Navigation