Skip to main content
Log in

LightFIDS: Lightweight and Hierarchical Federated IDS for Massive IoT in 6G Network

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

IoT traffic on access networks is expected to increase significantly with the advent of 6G-enabled massive IoT networks. Nevertheless, current intrusion detection system (IDS) designs may be unsuitable for handling this expansion. The rapidly evolving IoT landscape may lead to decreased intrusion detection accuracy and increased communication and computation overheads due to centralization. Moreover, the conventional IoT infrastructure poses challenges for existing IDS solutions. To tackle these shortcomings, edge intelligence-empowered IDS strategies utilize federated learning (FL) architecture to design next-generation IDSs. In this work, we introduce LightFIDS, a lightweight federated IDS with a softwarized hierarchical architecture that leverages 6G enablers to enhance the security and scalability of massive IoT networks. To achieve this goal, we examined four well-known lightweight detection models—MLP, LSTM, GRU, and TCN—as local learning models and evaluated their impacts on the proposed hierarchical architecture by measuring the number of global rounds needed to converge, besides the accuracy and the F-score of the models. Our aim was to determine the communication overhead caused by the convergence in FL as the network scaled. In this investigation, we used a new, realistic dataset called Edge-lIoTset. Our findings demonstrate that our novel framework significantly outperforms classical FL in terms of communication cost, convergence, and scalability. We also extended our understanding of how different lightweight local learning models might behave, given various scaling scenarios in this comprehensive benchmarking study. To the best of our knowledge, there are no other benchmarking studies of this kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Alotaibi, A.; Barnawi, A.: Idsoft: a federated and softwarized intrusion detection framework for massive internet of things in 6g network. J. King Saud Univ. Comput. Inf. Sci. 35(6), 101575 (2023)

    Google Scholar 

  2. Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D.: The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc. 2, 334–366 (2021)

    Article  Google Scholar 

  3. Alotaibi, A.; Barnawi, A.: Securing massive IoT in 6G: recent solutions, architectures, future directions. Internet Things 22, 100715 (2023)

    Article  Google Scholar 

  4. Mills, J.; Hu, J.; Min, G.: Communication-efficient federated learning for wireless edge intelligence in IoT. IEEE Internet Things J 7(7), 5986–5994 (2020)

    Article  Google Scholar 

  5. Liu, Y.; Yuan, X.; Xiong, Z.; Kang, J.; Wang, X.; Niyato, D.: Federated learning for 6G communications: challenges, methods, and future directions. China Commun. 17(9), 105–118 (2020)

    Article  CAS  Google Scholar 

  6. Yang, K.; Shi, Y.; Zhou, Y.; Yang, Z.; Fu, L.; Chen, W.: Federated machine learning for intelligent IoT via reconfigurable intelligent surface. IEEE Netw. 34(5), 16–22 (2020)

    Article  Google Scholar 

  7. Liu, S.; Yu, J.; Deng, X.; Wan, S.: Fedcpf: an efficient-communication federated learning approach for vehicular edge computing in 6g communication networks. IEEE Trans. Intell. Transp. Syst. 23(2), 1616–1629 (2022)

    Article  Google Scholar 

  8. Abdellatif, A.A.; Mhaisen, N.; Mohamed, A.; Erbad, A.; Guizani, M.; Dawy, Z.; Nasreddine, W.: Communication-efficient hierarchical federated learning for IoT heterogeneous systems with imbalanced data. Future Gener. Comput. Syst. 128, 406–419 (2022)

    Article  Google Scholar 

  9. Paragliola, G.: Evaluation of the trade-off between performance and communication costs in federated learning scenario. Future Gener. Comput. Syst. 136, 282–293 (2022)

    Article  Google Scholar 

  10. Truong, H.T.; Ta, B.P.; Le, Q.A.; Nguyen, D.M.; Le, C.T.; Nguyen, H.X.; Do, H.T.; Nguyen, H.T.; Tran, K.P.: Light-weight federated learning-based anomaly detection for time-series data in industrial control systems. Comput. Ind. 140, 103692 (2022)

    Article  Google Scholar 

  11. Xiao, Y.; Zhang, X.; Li, Y.; Shi, G.; Krunz, M.; Nguyen, D.N.; Hoang, D.T.: Time-sensitive learning for heterogeneous federated edge intelligence. IEEE Trans. Mob. Comput. 1–18 (2023)

  12. Ferrag, M.A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H.: Edge-IIoTset: a new comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning. IEEE Access 10, 40281–40306 (2022)

    Article  Google Scholar 

  13. Man, D.; Zeng, F.; Yang, W.; Yu, M.; Lv, J.; Wang, Y.: Intelligent intrusion detection based on federated learning for edge-assisted Internet of Things. Secur. Commun. Netw. 2021, 1–11 (2021)

    CAS  Google Scholar 

  14. Rey, V.; Sánchez, P.M.S.; Celdrán, A.H.; Bovet, G.; Jaggi, M.: Federated Learning for Malware detection in IoT devices. Comput. Netw. 204, 108693 (2022)

    Article  Google Scholar 

  15. Mothukuri, V.; Khare, P.; Parizi, R.M.; Pouriyeh, S.; Dehghantanha, A.; Srivastava, G.: Federated-learning-based anomaly detection for IoT security attacks. IEEE Internet Things J 9(4), 2545–2554 (2022)

    Article  Google Scholar 

  16. Ashraf, E.; Areed, N.F.F.; Salem, H.; Abdelhay, E.H.; Farouk, A.: FIDChain: federated intrusion detection system for blockchain-enabled iot healthcare applications. Healthcare 10(6), 1110 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huong, T.T.; Bac, T.P.; Long, D.M.; Luong, T.D.; Dan, N.M.; Quang, L.A.; Cong, L.T.; Thang, B.D.; Tran, K.P.: Detecting cyberattacks using anomaly detection in industrial control systems: a Federated Learning approach. Comput. Ind. 132, 103509 (2021)

    Article  Google Scholar 

  18. Zainudin, A.; Akter, R.; Kim, D.-S.; Lee, J.-M.: FedDDoS: an efficient federated learning-based DDoS attacks classification in SDN-enabled IIoT networks. In: 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), pp. 1279–1283. Jeju Island, Korea, Republic of, IEEE, Oct. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9952610/

  19. Huong, T.T.; Bac, T.P.; Long, D.M.; Thang, B.D.; Binh, N.T.; Luong, T.D.; Phuc, T.K.: LocKedge: low-complexity cyberattack detection in IoT edge computing. IEEE Access 9, 29696–29710 (2021)

    Article  Google Scholar 

  20. Khan, A.R.; Yasin, A.; Usman, S.M.; Hussain, S.; Khalid, S.; Ullah, S.S.: Exploring lightweight deep learning solution for malware detection in IoT constraint environment. Electronics 11(24), 4147 (2022)

  21. Ma, H.; Cao, J.; Mi, B.; Huang, D.; Liu, Y.; Li, S.: A GRU-based lightweight system for CAN intrusion detection in real time. Secur. Commun. Netw. 2022, 1–11 (2022)

    Google Scholar 

  22. Laghrissi, F.; Douzi, S.; Douzi, K.; Hssina, B.: Intrusion detection systems using long short-term memory (LSTM). J. Big Data 8(1), 65 (2021)

    Article  Google Scholar 

  23. Driss, M.; Almomani, I.; e Huma, Z.; Ahmad, J.: A federated learning framework for cyberattack detection in vehicular sensor networks. Complex Intell. Syst. 8(5), 4221–4235 (2022)

    Article  Google Scholar 

  24. Zhao, P.; Fan, Z.; Cao, Z.; Li, X.: Intrusion detection model using temporal convolutional network blend into attention mechanism. Int. J. Inf. Secur. Priv. 16(1), 1–20 (2021)

    Article  Google Scholar 

  25. Ferrag, M.A.; Friha, O.; Maglaras, L.; Janicke, H.; Shu, L.: Federated deep learning for cyber security in the Internet of Things: concepts, applications, and experimental analysis. IEEE Access 9, 138509–138542 (2021)

    Article  Google Scholar 

  26. Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Choo, K.-K.R.; Nafaa, M.: FELIDS: federated learning-based intrusion detection system for agricultural Internet of Things. J. Parallel Distrib. Comput. 165, 17–31 (2022)

    Article  Google Scholar 

  27. Jithish, J.; Alangot, B.; Mahalingam, N.; Yeo, K.S.: Distributed anomaly detection in smart grids: A federated learning-based approach. IEEE Access 11, 7157–7179 (2023)

    Article  Google Scholar 

  28. Campos, E.M.; Saura, P.F.; González-Vidal, A.; Hernández-Ramos, J.L.; Bernabé, J.B.; Baldini, G.; Skarmeta, A.: Evaluating federated learning for intrusion detection in Internet of Things: review and challenges. Comput. Netw. 203, 108661 (2022)

    Article  Google Scholar 

  29. Idrissi, I.; Azizi, M.; Moussaoui, O.: IoT security with deep learning-based intrusion detection systems: a systematic literature review. In: 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), pp. 1–10. IEEE, Fez, Morocco, Oct. 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9268713/

  30. Cheng, P.; Xu, K.; Li, S.; Han, M.: TCAN-IDS: intrusion detection system for internet of vehicle using temporal convolutional attention network. Symmetry 14(2), 310 (2022)

    Article  ADS  Google Scholar 

  31. Xin, L.; Ziang, L.; Yingli, Z.; Wenqiang, Z.; Dong, L.; Qingguo, Z.: TCN enhanced novel malicious traffic detection for IoT devices. Connect. Sci. 34(1), 1322–1341 (2022)

    Article  ADS  Google Scholar 

  32. Yang, R.; He, H.; Xu, Y.; Xin, B.; Wang, Y.; Qu, Y.; Zhang, W.: Efficient intrusion detection toward IoT networks using cloud-edge collaboration. Comput. Netw. 228, 109724 (2023)

    Article  Google Scholar 

  33. Liu, L.; Zhang, J.; Song, S.; Letaief, K. B.: Client-edge-cloud hierarchical federated learning. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020)

  34. Chen, M.; Poor, H.V.; Saad, W.; Cui, S.: Wireless communications for collaborative federated learning. IEEE Commun. Mag. 58(12), 48–54 (2020)

    Article  Google Scholar 

  35. Chai, D.; Wang, L.; Yang, L.; Zhang, J.; Chen, K.; Yang, Q.: FedEval: a holistic evaluation framework for federated learning. Dec. 2022, arXiv:2011.09655 [cs]. [Online]. Available: http://arxiv.org/abs/2011.09655

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Alotaibi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, A., Barnawi, A. LightFIDS: Lightweight and Hierarchical Federated IDS for Massive IoT in 6G Network. Arab J Sci Eng 49, 4383–4399 (2024). https://doi.org/10.1007/s13369-023-08439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08439-8

Keywords

Navigation