Skip to main content
Log in

Producing high value aroma compounds by whole-cell biocatalysis using Aspergillus niger LBM055

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aims of this article were to optimize and assay the production of high value aroma compounds at a bench-scale by the bioconversion capacity of Aspergillus niger LBM055 strain using R-limonene as platform chemical. Temperature, pH and agitation effect on R-limonene bioconversion were evaluated. Optimal R-limonene bioconversion was met at 30.5 \(^{\circ }\hbox {C}\), 100 rpm and pH 6.2, meanwhile best yield of high molecular weights products was obtained at 28 \(^{\circ }\hbox {C}\), 100 rpm and pH 5.4. Conditions of best yield of high molecular weights were selected to apply them at a bench-scale bioreactor. \(\alpha \)-pinene, \(\beta \)-pinene, citral, linalool, carvone, carveol and myrcene were identified. Also, a mixture of carvone, carveol and limonene oxide at a high concentration of 3.1 g/L, was identified by GC-MS analysis. Optimization analysis demonstrated that with the same substrate and fungal strain, it was possible to obtain different bioaromas compounds only by changing the operating conditions. Applying the operating parameters in a bench-scale bioreactor, a composite biofragrance of a terpene mixture, recognized by their citric, woody, floral and minty aromatic notes, was obtained. This study contributed to identified operational condition for the R-limonene bioconversion scale-up for the extension in the citrus industry value chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data that support the findings of this study are available in the Repositorio Institucional Digital de la Universidad Nacional de Misiones (RIDUNaM) at https://hdl.handle.net/20.500.12219/2998, Reference Number 20.500.12219/2998.

References

  1. Braga, A.; Guerreiro, C.; Belo, I.: Generation of flavors and fragrances through biotransformation and de novo synthesis. Food Bioprocess Technol. 11(12), 2217–2228 (2018). https://doi.org/10.1007/s11947-018-2180-8

    Article  Google Scholar 

  2. Satira, A.; Espro, C.; Paone, E.; Calabrò, P.S.; Pagliaro, M.; Ciriminna, R.; et al.: The limonene biorefinery: from extractive technologies to its catalytic upgrading into p-cymene. Catalysts 11(3), 387 (2021). https://doi.org/10.3390/catal11030387

    Article  Google Scholar 

  3. Schempp, F.M.; Drummond, L.; Buchhaupt, M.; Schrader, J.: Microbial cell factories for the production of terpenoid flavor and fragrance compounds. J. Agric. Food Chem. 66(10), 2247–2258 (2017). https://doi.org/10.1021/acs.jafc.7b00473

    Article  Google Scholar 

  4. Eze, V.C.; Rehman, A.; Patel, M.; Ahmad, S.; Harvey, A.P.: Synthesis of cyclic a-pinane carbonate-a potential monomer for bio-based polymers. RSC Adv. 12, 17454 (2022). https://doi.org/10.1039/d1ra07943c

    Article  Google Scholar 

  5. Kong, J.; Miao, L.; Lu, Z.; Wang, S.; Zhao, B.; Zhang, C.; et al.: Enhanced production of amyrin in Yarrowia lipolytica using a combinatorial protein and metabolic engineering approach. Microb. Cell Fact. 21, 186 (2022). https://doi.org/10.1186/s12934-022-01915-0

    Article  Google Scholar 

  6. Yadav, V.; Sarker, A.; Yadav, A.; Miftah, A.O.; Bilal, M.; Iqbal, H.M.N.: Integrated biorefinery approach to valorize citrus waste: a sustainable solution for resource recovery and environmental management. Chemosphere 293(January), 133459 (2022). https://doi.org/10.1016/j.chemosphere.2021.133459

    Article  Google Scholar 

  7. Santos, E.S.; de Sousa Machado, S.T.; Rodrigues, F.B.; da Silva, Y.A.; Matias, L.C.X.; Lopes, M.J.P.; Kerntopf, M.R.: Potential anti-inflammatory, hypoglycemic, and hypolipidemic activities of alpha-pinene in diabetic rats. Process Biochem. 126, 80–86 (2023). https://doi.org/10.1016/j.procbio.2022.12.023

    Article  Google Scholar 

  8. Sousa, C.; Neves, B.M.; Leitão, A.J.; Mendes, A.F.: Molecular mechanisms underlying the anti-inflammatory properties of \((R)-(-)-\)Carvone: potential roles of JNK1, Nrf2 and NF-\(\kappa \)B. Pharmaceutics 15(1), 249 (2023). https://doi.org/10.3390/pharmaceutics15010249

    Article  Google Scholar 

  9. Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Mendes, A.F.: Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol. 750, 141–150 (2015). https://doi.org/10.1016/j.ejphar.2015.01.018

    Article  Google Scholar 

  10. Muhammad, A.J.; Hao, L.; Al Kury, L.T.; Rehman, N.U.; Alvi, A.M.; Badshah, H.; Li, S.: Carveol promotes Nrf2 contribution in depressive disorders through an anti-inflammatory mechanism. Oxid. Med. Cell. Longev. (2022). https://doi.org/10.1155/2022/4509204

    Article  Google Scholar 

  11. Wu, Z.; Li, Z.; Liang, Y.: Myrcene exerts anti-tumor effects on oral cancer cells in vitro via induction of apoptosis. Trop. J. Pharm. Res. 21(5), 933–938 (2022). https://doi.org/10.4314/tjpr.v21i5.4

    Article  Google Scholar 

  12. Paulino, B.N.; Sales, A.; Felipe, L.D.O.; Pastore, G.M.; Molina, G.; Bicas, J.L.: Biotechnological production of non-volatile flavor compounds Bruno. Curr. Opin. Food Sci. 41, 26–35 (2021). https://doi.org/10.1016/j.cofs.2021.02.003

    Article  Google Scholar 

  13. Sharma, A.; Sharma, P.; Singh, J.; Singh, S.; Nain, L.: Prospecting the potential of agroresidues as substrate for microbial flavor production. Front. Sustain. Food Syst. (2020). https://doi.org/10.3389/fsufs.2020.00018

    Article  Google Scholar 

  14. Hosoglu, M.I.; Guneser, O.; Yuceer, Y.K.: Different bioengineering approaches on production of bioflavor compounds. Role Mater. Sci. Food Bioeng. (2018). https://doi.org/10.1016/B978-0-12-811448-3.00002-4

    Article  Google Scholar 

  15. Gonçalves, A.C.; Campos, G.; Pinto, E.; Oliveira, A.S.; Almeida, A.; de Pinho, P.G.; et al.: Essential and non-essential elements, and volatile organic compounds for the discrimination of twenty-three sweet cherry cultivars from Fundão. Portugal. Food Chem. 367(November 2020), 130503 (2022). https://doi.org/10.1016/j.foodchem.2021.130503

    Article  Google Scholar 

  16. Ren, Y.; Liu, S.; Jin, G.; Yang, X.; Zhou, Y.J.: Microbial production of limonene and its derivatives: achievements and perspectives. Biotechnol. Adv. 44(August), 107628 (2020). https://doi.org/10.1016/j.biotechadv.2020.107628

    Article  Google Scholar 

  17. Velázquez, J.E.; Sadañoski, M.A.; Zapata, P.D.; Comelli, N.A.; Villalba, L.L.: Bioproduction of \(\alpha \)-terpineol and R-(+)-limonene derivatives by terpene-tolerant ascomycete fungus as a potential contribution to the citrus value chain. J. Appl. Microbiol. 130, 76–89 (2021). https://doi.org/10.1111/jam.14777

    Article  Google Scholar 

  18. Wei, R.; Wang, J.; Su, M.; Jia, E.; Chen, S.; Chen, T.; et al.: Missing value imputation approach for mass spectrometry-based metabolomics data. Sci. Rep. 8, 1 (2018). https://doi.org/10.1038/S41598-017-19120-0

    Article  Google Scholar 

  19. Ferrara, M.A.; Almeida, D.S.; Siani, A.C.; Lucchetti, L.; Lacerda, P.S.B.; Freitas, A.; et al.: Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica. Braz. J. Microbiol. 44(4), 1075–1080 (2013)

    Article  Google Scholar 

  20. Molina, G.; Bution, M.L.; Bicas, J.L.; Dolder, M.A.H.; Pastore, G.M.: Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B. Food Chem. 174, 606–613 (2015). https://doi.org/10.1016/j.foodchem.2014.11.059

    Article  Google Scholar 

  21. Tai, Y.N.; Xu, M.; Ren, J.N.; Dong, M.; Yang, Z.Y.; Pan, S.Y.; et al.: Optimisation of \(\alpha \)-terpineol production by limonene biotransformation using Penicillium digitatum DSM 62840. J. Sci. Food Agric. 96(3), 954–961 (2016). https://doi.org/10.1002/jsfa.7171

  22. Sales, A.; Pastore, G.M.; Bicas, J.L.: Optimization of limonene biotransformation to limonene-1,2-diol by Colletotrichum nymphaeae CBMAI 0864. Process Biochem. 86(May), 25–31 (2019). https://doi.org/10.1016/j.procbio.2019.07.022

  23. Zhang, L.L.; Fan, G.; Li, X.; Ren, J.N.; Huang, W.; Pan, S.Y.; He, J.: Identification of functional genes associated with the biotransformation of limonene to trans-dihydrocarvone in Klebsiella sp. O852. J. Sci. Food Agric. 102(8), 3297–3307 (2022). https://doi.org/10.1002/jsfa.11675

    Article  Google Scholar 

  24. Roy, D.; Bhowal, J.: Bioconversion of Mandarin Orange Peels by Aspergillus oryzae and Penicillium sp. In: Ramkrishna, D., Sengupta, S., Dey Bandyopadhyay, S., Ghosh, A. (eds) Advances in Bioprocess Engineering and Technology . Lecture Notes in Bioengineering. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7409-2_2

  25. Monterrey, D.T.; Ayuso-Fernández, I.; Oroz-Guinea, I.; García-Junceda, E.: Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol. Adv. 60(July), 108016 (2022). https://doi.org/10.1016/j.biotechadv.2022.108016

    Article  Google Scholar 

  26. Chilakamarry, C.R.; Mimi Sakinah, A.M.; Zularisam, A.W.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; et al.: Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: opportunities and challenges. Bioresour. Technol. 343, 126065 (2022). https://doi.org/10.1016/j.biortech.2021.126065

    Article  Google Scholar 

  27. Tarafdar, A.; Sirohi, R.; Gaur, V.K.; Kumar, S.; Sharma, P.; Varjani, S.; et al.: Engineering interventions in enzyme production: lab to industrial scale. Bioresour. Technol. 326(January), 124771 (2021). https://doi.org/10.1016/j.biortech.2021.124771

    Article  Google Scholar 

  28. Montes-Serrano, I.; Satzer, P.; Jungbauer, A.; Dürauer, A.: Characterization of hydrodynamics and volumetric power input in microtiter plates for the scale-up of downstream operations. Biotechnol. Bioeng. 119, 523–534 (2022). https://doi.org/10.1002/bit.27983

    Article  Google Scholar 

  29. Noorman, H.J.; Heijnen, J.J.: Biochemical engineering’s grand adventure. Chem. Eng. Sci. 170, 677–693 (2017). https://doi.org/10.1016/j.ces.2016.12.065

    Article  Google Scholar 

  30. García-Carnelli, C.; Rodríguez, P.; Heinzen, H.; Menéndez, P.: Influence of culture conditions on the biotransformation of (+)-Limonene by Aspergillus niger. Zeitschrift fur Naturforsch. Sect. C J. Biosci. 69 C(1–2), 61–67 (2014). https://doi.org/10.5560/ZNC.2013-0048.

  31. Choudhury, S.; Chatterjee, A.: Microbial application in remediation of heavy metals: an overview. Arch. Microbiol. (2022). https://doi.org/10.1007/S00203-022-02874-1

    Article  Google Scholar 

  32. Rottava, I.; Toniazzo, G.; Cortina, P.F.; Martello, E.; Grando, C.E.; Lerin, L.A.; et al.: Screening of microorganisms for bioconversion of (-)\(\beta \)-pinene and R-(+)-limonene to \(\alpha \)-terpineol. LWT Food Sci. Technol. 43(7), 1128–1131 (2010). https://doi.org/10.1016/j.lwt.2010.03.001

    Article  Google Scholar 

  33. Staudt, A.; Brack, Y.; Itabaiana, I.; Correa, I.; Leal, R.: Biocatalytic synthesis of monoterpene esters—A review study on the phylogenetic evolution of biocatalysts. Mol. Catal. 528(June), 112464 (2022). https://doi.org/10.1016/j.mcat.2022.112464

    Article  Google Scholar 

  34. Comelli, N.; Avila, M.C.; Volzone, C.; Ponzi, M.: Hydration of \(\alpha \)-pinene catalyzed by acid clays. Cent. Eur. J. Chem. 11(5), 689–697 (2013). https://doi.org/10.2478/s11532-013-0217-4

    Article  Google Scholar 

  35. Polo, H.P.; Lopes, N.P.G.; da Silva, M.J.: Exploring the Keggin-type heteropolyacid-catalyzed reaction pathways of the \(\beta \)-pinene with alkyl alcohols. Catal. Lett. 149(10), 2844–2853 (2019). https://doi.org/10.1007/s10562-019-02808-5

    Article  Google Scholar 

  36. Jakab, E.; Blazsó, M.; Barta-Rajnai, E.; Babinszki, B.; Sebestyén, Z.; Czégény, Z.; et al.: Thermo-oxidative decomposition of lime, bergamot and cardamom essential oils. J. Anal. Appl. Pyrolysis 134(July), 552–561 (2018). https://doi.org/10.1016/j.jaap.2018.08.003

    Article  Google Scholar 

  37. Kivimäenpää, M.; Riikonen, J.; Valolahti, H.; Elina, H.; Holopainen, J.K.; Holopainen, T.: Effects of elevated ozone and warming on terpenoid emissions and concentrations of Norway spruce depend on needle phenology and age. Tree Physiol. (2022). https://doi.org/10.1093/treephys/tpac019

    Article  Google Scholar 

  38. Tai, Y.; Xu, M.; Ren, J.; Dong, M.; Yang, Z.; Pan, S.; et al.: Optimisation of \(\alpha \)-terpineol production by limonene biotransformation using Penicillium digitatum DSM 62840. J. Sci. Food Agric. 96, 954–961 (2016). https://doi.org/10.1002/jsfa.7171

  39. Prieto S.; G.A.; Perea V.; J.A.; Ortiz L;, C.C.: Microbial biotransformation of (R)-(+)-limonen by Penicillium digitatum DSM 62840 for producing (R)-(+)-terpineol. VITAE Rev. LA Fac. QUÍMICA Farm. 18(2), 163–172 (2011).

  40. Zhao, W.Y.; Yi, J.; Chang, Y.B.; Sun, C.P.; Ma, X.C.: Recent studies on terpenoids in Aspergillus fungi: Chemical diversity, biosynthesis, and bioactivity. Phytochemistry 193(November 2021), 113011 (2022). https://doi.org/10.1016/j.phytochem.2021.113011.

  41. Bhavsar, K.V.; Yadav, G.D.: Synthesis of geranyl acetate by transesterification of geraniol with ethyl acetate over Candida antarctica lipase as catalyst in solvent-free system. Flavour Fragr. J. 34(4), 288–293 (2019). https://doi.org/10.1002/ffj.3502

  42. Koerich, D.M.; Rosa, L.M.: Numerical evaluation of the low Reynolds turbulent flow behaviour in a bioreactor. Int. J. Simul. Process Model. 11(1), 66–75 (2016). https://doi.org/10.1504/IJSPM.2016.075081

    Article  Google Scholar 

  43. Amanullah, A.; Buckland, B.C.; Nienow, A.W.: Mixing in the fermentation and cell culture industries. (2004). https://doi.org/10.1002/0471451452.ch18

  44. Amaral, M.S.S.; Hearn, M.; Marriott, P.J.: Quantitative assessment of enzymatic processes applied to flavour and fragrance standard compounds using gas chromatography with flame ionisation detection. J. Chromatogr. B 1209(August), 123412 (2022). https://doi.org/10.1016/j.jchromb.2022.123412

    Article  Google Scholar 

  45. Olalere, O.A.; Gan, C.-Y.; Taiwo, A.E.; Alenezi, H.; Adeyi, O.; Adeyi, A.J.: Emerging trends in bioreactor systems for an improved wastes valorization. Techno-econ. Life Cycle Assess. Bioreact. (2022). https://doi.org/10.1016/B978-0-323-89848-5.00006-8

    Article  Google Scholar 

  46. Zhu, F.X.X.; Xu, L.: Integrating multiscale modeling and optimization for sustainable process development. Chem. Eng. Sci. 254, 117619 (2022). https://doi.org/10.1016/j.ces.2022.117619

    Article  Google Scholar 

  47. Hardy, N.; Augier, F.; Nienow, A.W.; Béal, C.; Ben Chaabane, F.: Scale-up agitation criteria for Trichoderma reesei fermentation. Chem. Eng. Sci. 172, 158–168 (2017). https://doi.org/10.1016/j.ces.2017.06.034

  48. Lizarralde, R.; Ganzarain, J.; Zubizarreta, M.: Adaptation of the MIVES method for the strategic selection of new technologies at an R &D centre. Focus Manuf. Sector. Technovation 115, 102462 (2022). https://doi.org/10.1016/j.technovation.2022.102462

    Article  Google Scholar 

  49. Pozdnyakov, N.; Shilov, S.; Lukin, A.; Bolshakov, M.; Sogorin, E.: Investigation of enzymatic hydrolysis kinetics of soy protein isolate: laboratory and semi-industrial scale. Bioresour. Bioprocess. 9, 37 (2022). https://doi.org/10.1186/s40643-022-00518-2

    Article  Google Scholar 

  50. Devi, N.; Patel, S.K.S.; Kumar, P.; Singh, A.; Thakur, N.; Lata, J.; et al.: Bioprocess scale-up for acetohydroxamic acid production by hyperactive acyltransferase of immobilized rhodococcus pyridinivorans. Catal. Lett. 152(4), 944–953 (2022). https://doi.org/10.1007/s10562-021-03696-4

    Article  Google Scholar 

  51. Marques, M.P.C.; Cabral, J.M.S.; Fernandes, P.: Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale. J. Chem. Technol. Biotechnol. 85, 1184–1198 (2010). https://doi.org/10.1002/jctb.2387

    Article  Google Scholar 

  52. Wang, H.; Duan, X.; Feng, X.; Mao, Z.S.; Yang, C.: Effect of impeller type and scale-up on spatial distribution of shear rate in a stirred tank. Chin. J. Chem. Eng. 42, 351–363 (2022). https://doi.org/10.1016/j.cjche.2021.03.004

    Article  Google Scholar 

  53. Liu, P.; Liu, X.; Saburi, T.; Kubota, S.; Huang, P.; Wada, Y.: Thermal stability and oxidation characteristics of a-pinene, b-pinene and a-pinene/b-pinene mixture. RSC Adv. 11(33), 20529–20540 (2021). https://doi.org/10.1039/d1ra02235k

    Article  Google Scholar 

  54. Branco, S.; Schauster, A.; Liao, H.-L.; Ruytinx, J.: Tansley review Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. (2022). https://doi.org/10.1111/nph.18308

    Article  Google Scholar 

  55. Turman, E.M.; Wayne Strasser, P.E.: Leveraging fuzzy logic PID controllers for accelerating chemical reactor CFD. Chem. Eng. Sci. 262, 118029 (2022). https://doi.org/10.1016/j.ces.2022.118029

    Article  Google Scholar 

  56. Mitra, S.; Murthy, G.S.: Bioreactor control systems in the biopharmaceutical industry: a critical perspective. Syst. Microbiol. Biomanuf. 2, 91–112 (2022). https://doi.org/10.1007/s43393-021-00048-6

    Article  Google Scholar 

  57. Pessôa, M.G.; Paulino, B.N.; Molina, G.; Pastore, G.M.: Prospective research and current technologies for bioflavor production. bioprocess. Biomol. Prod. (2019). https://doi.org/10.1002/9781119434436.ch5.

  58. Zhang, L.; Chen, Y.; Li, Z.; Li, X.; Fan, G.: Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: A review. Food Funct. (2022). https://doi.org/10.1039/D1FO04080D.

  59. Shui, M.; Feng, T.; Tong, Y.; Zhuang, H.; Lo, C.; Sun, H.; et al.: Molecules characterization of key aroma compounds and construction of flavor base module of Chinese sweet oranges. Molecules 24, 2384 (2019). https://doi.org/10.3390/molecules24132384

  60. Ni, R.; Yan, H.; Tian, H.; Zhan, P.; Zhang, Y.: Characterization of key odorants in fried red and green huajiao (Zanthoxylum bungeanum maxim. and Zanthoxylum schinifolium sieb. et Zucc.) oils. Food Chem. 377(December 2021), 131984 (2022). https://doi.org/10.1016/j.foodchem.2021.131984.

Download references

Acknowledgements

P.D.Z., N.A.C. and M.A.S. are career members from CONICET. J.E.V. has a postdoctoral Grant from CONICET (RESOL-2021-1071-APN-DIR#CONICET), Argentina.

Funding

This research was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Misiones (UNaM) through the PIO CONICET-UNAM project (number 23720160100005CO).

Author information

Authors and Affiliations

Authors

Contributions

J.E.V. and M.A.S. wrote the main manuscript text, investigation and formal analysis, P.D.Z. worked in the resources and funding acquisition, and N.A.C and L.L.V supervised the work and edited the text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Juan Velázquez.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Ethics Approval

This manuscript has not been previously published (in part or in whole, in any language), is not in press, and is not under consideration for publication elsewhere.

Consent for Publication

All authors consent to publish the manuscript in the Arabian Journal for Science and Engineering.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez, J., Sadañoski, M., Zapata, P. et al. Producing high value aroma compounds by whole-cell biocatalysis using Aspergillus niger LBM055. Arab J Sci Eng 48, 16495–16506 (2023). https://doi.org/10.1007/s13369-023-08326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08326-2

Keywords

Navigation