Skip to main content
Log in

Digital Pre-Distorter System Based on Memoryless Hammerstein Model for High Power Amplifier Impairments

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the limitation of high power amplifier’s (HPA) physical structure, challenges such as nonlinearity and memory distortions which impact the transmitted signal in HPA system remain as an open research problem. As such, this paper introduces a simple and low complex Hammerstein model design as a digital predistorter (DPD) which can handle both of the mentioned challenges. This model first estimates the reverse error to deal with the nonlinearity effect. Subsequently, the DPD complexity is eliminated by removing the order of the memory polynomial. In order to reduce the memory effect resulting from HPA, the proposed model deploys traditional filter such as Finite Impulse Response to the acquired signal in the Hammerstein model. The simulation results show that the proposed DPD outperforms the current best practices for nonlinearity by \(96\%\) from the ideal signal, and memory effect compensation by \(95\%\) from the original signal position in space. Based on that, the proposed DPD can be utilized as conventional HPA for transmitting a standard signal with minimum risk of distortion, and achieving high signal to noise ratio against state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cherif, M.; Arfaoui, A.; Bouallegue, R.: Autoencoder-based deep learning for massive multiple-input multiple-output uplink under high-power amplifier non-linearities. IET Commun. 17(2), 162–170 (2023)

    Article  Google Scholar 

  2. Costa, E.; Pupolin, S.: M-qam-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Trans. Commun. 50(3), 462–472 (2002)

    Article  Google Scholar 

  3. Zhang, L.; Ijaz, A.; Xiao, P.; Molu, M.M.; Tafazolli, R.: Filtered OFDM systems, algorithms, and performance analysis for 5g and beyond. IEEE Trans. Commun. 66(3), 1205–1218 (2017)

    Article  Google Scholar 

  4. Paredes, M.C.P.; Grijalva, F.; Carvajal-Rodríguez, J.; Sarzosa, F.: Performance analysis of the effects caused by HPA models on an OFDM signal with high PAPR. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), pp. 1–5 (2017)

  5. Keshavarz, R.; Mohammadi, A.; Abdipour, A.: Linearity improvement of a dual-band Doherty power amplifier using E-CRLH transmission line. AEU-Int. J. Electron. C. 131, 153584 (2021)

    Article  Google Scholar 

  6. Zhi-yong, H.; Jian-hua, G.; Shu-Jian, G.; Gang, W.: An improved look-up table predistortion technique for HPA with memory effects in OFDM systems. IEEE Trans. Broadcast. 52(1), 87–91 (2006)

    Article  Google Scholar 

  7. Gan, D.; Shi, W.; Haider, M.F.; Naah, G.: Design of continuous mode Doherty power amplifiers using generalized output combiner. AEU-Int. J. Electron. C. 116, 153069 (2020)

    Article  Google Scholar 

  8. Wang, Z.; Yu, J.; Bi, K.; Zhu, W.; Lin, S.: A 2.4 Ghz bidirectional power amplifier extending nodes distance of transmission to 14.8 km for amorphous flat air-to-ground wireless ad hoc network. Arab. J. Sci. Eng. 47(3), 3239–3254 (2022)

    Article  Google Scholar 

  9. Al-Ja’afari, M.A.; Al-Rammahi, L.F.; Abedi, F.; Al-Rikabi, H.M.; Gaba, G.S.: A simplified adaptive digital predistorter for a high power amplifier with memory effects based on direct learning architecture. In: AIP Conference Proceedings, vol. 2651. AIP Publishing (2023)

  10. Qi, J.; Aissa, S.: Analysis and compensation of power amplifier nonlinearity in MIMO transmit diversity systems. IEEE Trans. Veh. Technol. 59(6), 2921–2931 (2010)

    Article  Google Scholar 

  11. Liu, B.; Ding, D.; Liu, Z.: Nonlinear compensation of OFDM systembased on DNN. In: 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), IEEE, pp. 158–161 (2020)

  12. Katz, A.; Wood, J.; Chokola, D.: The evolution of pa linearization: from classic feedforward and feedback through analog and digital predistortion. IEEE Microwave Mag. 17(2), 32–40 (2016)

    Article  Google Scholar 

  13. Faig, H.; Yoffe, Y.; Wohlgemuth, E.; Sadot, D.: Dimensions-reduced volterra digital pre-distortion based on orthogonal basis for band-limited nonlinear opto-electronic components. IEEE Photonics J. 11(1), 1–13 (2019)

    Article  Google Scholar 

  14. Chen, Q.; Wang, Z.; Pedersen, G.F.; Shen, M.: Joint satellite-transmitter and ground-receiver digital pre-distortion for active phased arrays in Leo satellite communications. Remote Sensing 14(17), 4319 (2022)

    Article  Google Scholar 

  15. Bajaj, V.; Buchali, F.; Chagnon, M.; Wahls, S.; Aref, V.: Deep neural network-based digital pre-distortion for high baudrate optical coherent transmission. J. Lightwave Technol. 40(3), 597–606 (2021)

    Article  Google Scholar 

  16. Pasechnyuk, D.; Maslovskiy, A.; Gasnikov, A.; Anikin, A.; Rogozin, A.; Gornov, A.; Vorobyev, A.; Yanitskiy, E.; Antonov, L.; Vlasov, R.; et al.: Non-convex optimization in digital pre-distortion of the signal. arXiv preprint (2021). arXiv:2103.10552

  17. Al-Duwaish, H.N.: Identification of Hammerstein models with known nonlinearity structure using particle swarm optimization. Arab. J. Sci. Eng. 36, 1269–1276 (2011)

    Article  Google Scholar 

  18. Bai, E.-W.: A blind approach to the Hammerstein-wiener model identification. Automatica 38(6), 967–979 (2002)

    Article  MathSciNet  Google Scholar 

  19. Kappatou, C.D.; Bongartz, D.; Najman, J.; Sass, S.; Mitsos, A.: Global dynamic optimization with Hammerstein-wiener models embedded. J. Global Optim. 84(2), 321–347 (2022)

    Article  MathSciNet  Google Scholar 

  20. Sun, C.; Liu, P.; Guo, H.; Di, Y.; Xu, Q.; Hao, X.: Control of Precalciner temperature in the cement industry: a novel method of Hammerstein model predictive control with ISSA. Processes 11(1), 214 (2023)

    Article  Google Scholar 

  21. Schoukens, M.; Tiels, K.: Identification of block-oriented nonlinear systems starting from linear approximations: a survey. Automatica 85, 272–292 (2017)

    Article  MathSciNet  Google Scholar 

  22. Sasai, T.; Nakamura, M.; Yamazaki, E.; Matsushita, A.; Okamoto, S.; Horikoshi, K.; Kisaka, Y.: Wiener-Hammerstein model and its learning for nonlinear digital pre-distortion of optical transmitters. Opt. Express 28(21), 30952–30963 (2020)

    Article  Google Scholar 

  23. Ku, H.; Mckinley, M.D.; Kenney, J.S.: Extraction of accurate behavioral models for power amplifiers with memory effects using two-tone measurements. In: 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278), IEEE, vol. 1, pp. 139–142 (2002)

  24. Abi Hussein, M.; Bohara, V.A.; Venard, O.: On the system level convergence of ILA and DLA for digital predistortion. In: 2012 International Symposium on Wireless Communication Systems (ISWCS), IEEE, pp. 870–874 (2012)

  25. Becerra, J.; Perez-Hernandez, A.; Madero-Ayora, M.; Crespo-Cadenas, C.: A reduced-complexity direct learning architecture for digital predistortion through iterative pseudoinverse calculation. IEEE Microwave Wirel. Compon. Lett. 31(8), 933–936 (2021)

    Article  Google Scholar 

  26. Suryasarman, P.M.; Springer, A.: A comparative analysis of adaptive digital predistortion algorithms for multiple antenna transmitters. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1412–1420 (2015)

    Article  MathSciNet  Google Scholar 

  27. Engel, Y.; Mannor, S.; Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 52(8), 2275–2285 (2004)

    Article  MathSciNet  Google Scholar 

  28. Ding, L.; Zhou, G.T.; Morgan, D.R.; Ma, Z.; Kenney, J.S.; Kim, J.; Giardina, C.R.: A robust digital baseband Predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004)

    Article  Google Scholar 

  29. Feng, X.; Feuvrie, B.; Descamps, A.-S.; Wang, Y.: Improved baseband digital predistortion for linearising pas with nonlinear memory effects using linearly interpolated LUT. Electron. Lett. 49(22), 1389–1391 (2013)

  30. Braithwaite, R.N.: A comparison of indirect learning and closed loop estimators used in digital predistortion of power amplifiers. In: 2015 IEEE MTT-S International Microwave Symposium, IEEE, pp. 1–4 (2015)

  31. Batov, Y.; Puzko, D.; Gelgor, A.; Tkachenko, D.; Montalbán, J.; Angueira, P.: High power amplifier nonlinearity models and digital predistortion techniques in dvb-s2x. In: 2022 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), IEEE, pp. 01–06 (2022)

  32. Morgan, D.R.; Ma, Z.; Kim, J.; Zierdt, M.G.; Pastalan, J.: A generalized memory polynomial model for digital predistortion of rf power amplifiers. IEEE Trans. Signal Process. 54(10), 3852–3860 (2006)

    Article  Google Scholar 

  33. Chen, W.; Liu, X.; Chu, J.; Wu, H.; Feng, Z.; Ghannouchi, F.M.: A low complexity moving average nested GMP model for digital predistortion of broadband power amplifiers. IEEE Trans. Circuits Syst. I Regul. Pap. 69(5), 2070–2083 (2022)

    Article  Google Scholar 

  34. Hongyo, R.; Egashira, Y.; Hone, T.M.; Yamaguchi, K.: Deep neural network-based digital Predistorter for Doherty power amplifiers. IEEE Microwave Wirel. Compon. Lett. 29(2), 146–148 (2019)

    Article  Google Scholar 

  35. Jayati, A.E.; Sipan, M.: Impact of nonlinear distortion with the RAPP model on the GFDM system. In: 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), pp. 1–5 (2020)

  36. Lazaro, M.; Santamaria, I.; Pantaleon, C.; Sanchez, A.M.; Puente, A.T.; Fernandez, T.: Smoothing the canonical piecewise-linear model: an efficient and derivable large-signal model for MESFET/HEMT transistors. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 48(2), 184–192 (2001)

    Article  Google Scholar 

  37. O’droma, M.; Meza, S.; Lei, Y.: New modified Saleh models for memoryless nonlinear power amplifier behavioural modelling. IEEE Commun. Lett. 13(6), 399–401 (2009)

    Article  Google Scholar 

  38. Qing, C.; Tang, S.; Rao, C.; Ye, Q.; Wang, J.; Huang, C.: Label design-based elm network for timing synchronization in OFDM systems with nonlinear distortion. arXiv preprint arXiv:2107.13177 (2021)

  39. Liu, T.; Boumaiza, S.; Ghannouchi, F.M.: Dynamic behavioral modeling of 3g power amplifiers using real-valued time-delay neural networks. IEEE Trans. Microw. Theory Tech. 52(3), 1025–1033 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas Abedi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, F. Digital Pre-Distorter System Based on Memoryless Hammerstein Model for High Power Amplifier Impairments. Arab J Sci Eng 49, 6419–6428 (2024). https://doi.org/10.1007/s13369-023-08270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08270-1

Keywords

Navigation