Skip to main content
Log in

Synthesis and Characterization of Fe3O4@SiO2@MgAl-LDH@Au.Pd as an Efficient and Magnetically Recyclable Catalyst for Reduction of 4-Nitrophenol and Suzuki Coupling Reactions

  • Research Article-chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, the synthesis and characterization of magnetic nanocomposite Fe3O4@SiO2@MgAl-LDH@Au.Pd were reported and utilized in an efficient and environmentally benign protocol for the reduction of 4-nitrophenol and preparation of biphenyl derivatives. The synthesized nanocomposite was studied and identified by various analytical methods such as FT-IR, XRD, EDS, TEM, TGA, FESEM, VSM and XPS. Monitoring the progress of the reduction reaction of 4-nitrophenol to 4-aminophenol was performed by UV–Vis analysis. According to the results, 4-nitrophenol was successfully converted to the corresponding 4-aminophenol using NaBH4 in the presence of nanocomposite. Furthermore, the application of this magnetic nanocatalyst was also investigated in Suzuki coupling reaction. Consequently, the reactions of different aryl halides with phenylboronic acids led to the formation of corresponding biphenyl products in high-to-excellent yields. The recovery and reusability of Fe3O4@SiO2@MgAl-LDH@Au.Pd disclosed that it can be retrieved and reused for the next run up to 6 times with slight decline in its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  1. Bilal, M.; Bagheri, A.R.; Bhatt, P.; Chen, S.: Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. J. Environ. Manag. 291, 112685 (2021). https://doi.org/10.1016/j.jenvman.2021.112685

    Article  Google Scholar 

  2. Eichenbaum, G.; Johnson, M.; Kirkland, D.; O’Neill, P.; Stellar, S.; Bielawne, J.; DeWire, R.; Areia, D.; Bryant, S.; Weiner, S.; Desai-Krieger, D.; Guzzie-Peck, P.; Evans, D.C.; Tonelli, A.: Assessment of the genotoxic and carcinogenic risks of p-nitrophenol when it is present as an impurity in a drug product. Regul. Toxicol. Pharmacol. 55, 33–42 (2009). https://doi.org/10.1016/j.yrtph.2009.05.018

    Article  Google Scholar 

  3. Rappoport, Z.: The Chemistry of Anilines: Part 1. John Wiley, Chichester (2009)

    Google Scholar 

  4. Jain, Z.J.; Gide, P.S.; Kankate, R.S.: Biphenyls and their derivatives as synthetically and pharmacologically important aromatic structural moieties. Arab. J. Chem. 10, S2051–S2066 (2017). https://doi.org/10.1016/j.arabjc.2013.07.035

    Article  Google Scholar 

  5. Wang, L.; Lyu, S.; Zhang, P.; Tian, X.; Wang, D.; Huang, W.; Liu, Z.: Nitrogen-bonded ultrasmall palladium clusters over the nitrogen-doped carbon for promoting Suzuki cross-coupling reactions. Adv. Compos. Hybrid Mater. 5, 1396–1403 (2022). https://doi.org/10.1007/s42114-022-00468-5

    Article  Google Scholar 

  6. Mora, M.; Jiménez-Sanchidrián, C.; Ruiz, J.R.: Heterogeneous Suzuki cross-coupling reactions over palladium/hydrotalcite catalysts. J. Colloid Interface Sci. 302, 568–575 (2006). https://doi.org/10.1016/j.jcis.2006.06.058

    Article  Google Scholar 

  7. Choudhary, H.; Jia, J.; Nishimura, S.; Ebitani, K.: Surfactant-assisted Suzuki–Miyaura coupling reaction of unreactive chlorobenzene over hydrotalcite-supported palladium catalyst. Asian J. Org. Chem. 6, 274–277 (2017). https://doi.org/10.1002/ajoc.201600606

    Article  Google Scholar 

  8. Karanjit, S.; Kashihara, M.; Nakayama, A.; Shrestha, L.K.; Ariga, K.; Namba, K.: Highly active and reusable hydrotalcite-supported Pd (0) catalyst for Suzuki coupling reactions of aryl bromides and chlorides. Tetrahedron 74, 948–954 (2018). https://doi.org/10.1016/j.tet.2017.12.056

    Article  Google Scholar 

  9. Fan, X.; Zheng, Y.: Biosynthesis of eco-friendly and recyclable Pd/LDHs catalyst using the withered leaves extract for Suzuki coupling reaction. IET Nanobiotechnol. 14, 59–65 (2020). https://doi.org/10.1049/iet-nbt.2019.0188

    Article  Google Scholar 

  10. Ruiz, J.R.; Jiménez-Sanchidrián, C.; Mora, M.: Palladium supported on hydrotalcite as a catalyst for the Suzuki cross-coupling reaction. Tetrahedron 62, 2922–2926 (2006). https://doi.org/10.1016/j.tet.2006.01.004

    Article  Google Scholar 

  11. Yu, Y.; Gong, Y.; Cao, B.; Liu, H.; Zhang, X.; Han, X.; Lu, S.; Cao, X.; Gu, H.: One-pot synthesis of Pd/azo-polymer as an efficient catalyst for 4-nitrophenol reduction and Suzuki–Miyaura coupling reaction. Chem. Asian J. 16, 837–844 (2021). https://doi.org/10.1002/asia.202100002

    Article  Google Scholar 

  12. Wang, P.; Zhu, H.; Liu, M.; Niu, J.; Yuan, B.; Li, R.; Ma, J.: Stabilizing Pd on the surface of amine-functionalized hollow Fe3O4 spheres: a highly active and recyclable catalyst for Suzuki cross-coupling and hydrogenation reactions. RSC Adv. 4, 28922–28927 (2014). https://doi.org/10.1039/C4RA02130D

    Article  Google Scholar 

  13. Liu, F.; Liu, X.; Chen, F.; Fu, Q.: Tannic Acid: A green and efficient stabilizer of Au, Ag, Cu and Pd nanoparticles for the 4-Nitrophenol Reduction, Suzuki–Miyaura coupling reactions and click reactions in aqueous solution. J. Colloid Interface Sci. 604, 281–291 (2021). https://doi.org/10.1016/j.jcis.2021.07.015

    Article  Google Scholar 

  14. Baran, N.Z.: Palladium nanoparticles decorated on a novel polyazomethine as a highly productive and recyclable catalyst for Suzuki coupling reactions and 4-nitrophenol reduction. J. Organomet. Chem. 899, 120886 (2019). https://doi.org/10.1016/j.jorganchem.2019.120886

    Article  Google Scholar 

  15. Dong, Z.; Pan, H.; Chen, J.; Fan, L.; Guo, J.; Wang, W.: Palladium supported on urea-containing porous organic polymers as heterogeneous catalysts for C–C cross coupling reactions and reduction of nitroarenes. J. Saudi Chem. Soc. 25, 101317 (2021). https://doi.org/10.1016/j.jscs.2021.101317

    Article  Google Scholar 

  16. Sakthivel, C.; Nivetha, A.; Prabha, I.: Evaluation on synthesis and catalytic properties of ZnO enriched MgO nanomaterials using Limonia Acidissima as effective green substrate. Arab. J. Sci. Eng. 47, 7081–7091 (2022). https://doi.org/10.1007/s13369-021-06344-6

    Article  Google Scholar 

  17. Lu, F.; Astruc, D.: Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 408, 213180 (2020). https://doi.org/10.1016/j.ccr.2020.213180

    Article  Google Scholar 

  18. Kempasiddaiah, M.; Kandathil, V.; Dateer, R.B.; Baidya, M.; Patil, S.A.; Patil, S.A.: Efficient and recyclable palladium enriched magnetic nanocatalyst for reduction of toxic environmental pollutants. J. Environ. Sci. 101, 189–204 (2021). https://doi.org/10.1016/j.jes.2020.08.015

    Article  Google Scholar 

  19. Manda, A.A.: Synthesis of Bi2O2.75/α-Fe2O3 nanocomposite by laser ablation and its application for catalytic reduction of 4-nitrophenol. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06940-0

    Article  Google Scholar 

  20. Farooqi, Z.H.; Begum, R.; Naseem, K.; Wu, W.; Irfan, A.: Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. Catal. Rev. 64, 286–355 (2022). https://doi.org/10.1080/01614940.2020.1807797

    Article  Google Scholar 

  21. Zhang, K.; Suh, J.M.; Choi, J.W.; Jang, H.W.; Shokouhimehr, M.; Varma, R.S.: Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega 4, 483–495 (2019). https://doi.org/10.1021/acsomega.8b03051

    Article  Google Scholar 

  22. Shokouhimehr, M.: Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts 5, 534–560 (2015). https://doi.org/10.3390/catal5020534

    Article  Google Scholar 

  23. Byun, S.; Song, Y.; Kim, B.M.: Heterogenized bimetallic Pd–Pt–Fe3O4 nanoflakes as extremely robust, magnetically recyclable catalysts for chemoselective nitroarene reduction. ACS Appl. Mater. Interfaces 8, 14637–14647 (2016). https://doi.org/10.1021/acsami.6b05229

    Article  Google Scholar 

  24. Yang, S.; Zhang, Z.H.; Chen, Q.; He, M.Y.; Wang, L.: Magnetically recyclable metal–organic framework@Fe3O4 composite-catalyzed facile reduction of nitroarene compounds in aqueous medium. Appl. Organomet. Chem. 32, e4132 (2018). https://doi.org/10.1002/aoc.4132

    Article  Google Scholar 

  25. Yao, T.; Cui, T.; Fang, X.; Cui, F.; Wu, J.: Preparation of yolk–shell Fex Oy/Pd@ mesoporous SiO2 composites with high stability and their application in catalytic reduction of 4-nitrophenol. Nanoscale 5, 5896–5904 (2013). https://doi.org/10.1039/C3NR01470C

    Article  Google Scholar 

  26. Liu, Y.; Lv, M.; Li, L.; Yu, H.; Wu, Q.; Pang, J.; Liu, Y.; Xie, C.; Yu, S.; Liu, S.: Synthesis of a highly active amino-functionalized Fe3O4@SiO2/APTS/Ru magnetic nanocomposite catalyst for hydrogenation reactions. Appl. Organomet. Chem. 33, e4686 (2019). https://doi.org/10.1002/aoc.4686

    Article  Google Scholar 

  27. Ayad, M.M.; Amer, W.A.; Kotp, M.G.; Minisy, I.M.; Rehab, A.F.; Kopecký, D.; Fitl, P.: Synthesis of silver-anchored polyaniline-chitosan magnetic nanocomposite: a smart system for catalysis. RSC Adv. 7, 18553–18560 (2017). https://doi.org/10.1039/C7RA02575K

    Article  Google Scholar 

  28. Sydnes, M.O.: The Use of palladium on magnetic support as catalyst for Suzuki–Miyaura cross-coupling reactions. Catalysts 7, 35 (2017). https://doi.org/10.3390/catal7010035

    Article  Google Scholar 

  29. Jose, D.E.; Kanchana, U.S.; Mathew, T.V.: Recent developments of supported Palladium nanocatalyst and magnetically separable supported Palladium nanocatalysts for Heck cross-coupling reactions. J. Nanoparticle Res. 24, 89 (2022). https://doi.org/10.1007/s11051-022-05472-w

    Article  Google Scholar 

  30. Yousefi, V.; Tarhriz, V.; Eyvazi, S.; Dilmaghani, A.: Synthesis and application of magnetic@ layered double hydroxide as an anti-inflammatory drugs nanocarrier. J. Nanobiotechnol. 18, 1–11 (2020). https://doi.org/10.1186/s12951-020-00718-y

    Article  Google Scholar 

  31. Ay, A.N.; Abramova, N.V.; Konuk, D.; Lependina, O.L.; Sokolov, V.I.; Zümreoglu-Karan, B.: Magnetically-recoverable Pd-immobilized layered double hydroxide-iron oxide nanocomposite catalyst for carbon-carbon cross-coupling reactions. Inorg. Chem. Commun. 27, 64–68 (2013). https://doi.org/10.1016/j.inoche.2012.10.020

    Article  Google Scholar 

  32. Li, J.; Wang, Y.; Jiang, S.; Zhang, H.: Facile synthesis of magnetic recyclable palladium-gold alloy nanoclusters catalysts PdAur/Fe3O4@ LDH and its catalytic applications in Heck reaction. J. Organomet. Chem. 878, 84–95 (2018). https://doi.org/10.1016/j.jorganchem.2018.10.007

    Article  Google Scholar 

  33. Gao, X.; Niu, L.; Qiao, X.; Feng, W.; Cao, Y.; Bai, G.: Facile preparation of a stable Fe3O4@ LDH@ NiB magnetic core–shell nanocomposite for hydrogenation. Chin. J. Chem. 35, 1149–1156 (2017). https://doi.org/10.1002/cjoc.201600759

    Article  Google Scholar 

  34. Dinari, M.; Dadkhah, F.: Swift reduction of 4-nitrophenol by easy recoverable magnetite-Ag/layered double hydroxide/starch bionanocomposite. Carbohydr. Polym. 228, 115392 (2020). https://doi.org/10.1016/j.carbpol.2019.115392

    Article  Google Scholar 

  35. Gu, P.; Zhang, S.; Li, X.; Wang, X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X.: Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 240, 493–505 (2018). https://doi.org/10.1016/j.envpol.2018.04.136

    Article  Google Scholar 

  36. Islam, S.; Khan, W.: Synthesis of dendritic ligand assisted Zn/Cu bimetallic nanoparticles as a highly active green catalyst for chemoselective oxidation and reduction reaction. Arab. J. Sci. Eng. 46, 447–462 (2021). https://doi.org/10.1007/s13369-020-04908-6

    Article  Google Scholar 

  37. Mandal, R.; Baranwal, A.; Srivastava, A.; Chandra, P.: Evolving trends in bio/chemical sensor fabrication incorporating bimetallic nanoparticles. Biosens. Bioelectron. 117, 546–561 (2018). https://doi.org/10.1016/j.bios.2018.06.039

    Article  Google Scholar 

  38. Sharma, D.; Ledwani, L.; Kumar, N.; Mehrotra, T.; Pervaiz, N.; Kumar, R.: An investigation of physicochemical and biological properties of Rheum emodi-mediated bimetallic Ag–Cu nanoparticles. Arab. J. Sci. Eng. 46, 275–285 (2021). https://doi.org/10.1007/s13369-020-04641-0

    Article  Google Scholar 

  39. Hossain, S.S.: Bimetallic Pd–Fe supported on nitrogen-doped reduced graphene oxide as electrocatalyst for formic acid oxidation. Arab. J. Sci. Eng. 46, 6543–6556 (2021). https://doi.org/10.1007/s13369-020-05192-0

    Article  Google Scholar 

  40. Wang, D.; Villa, A.; Porta, F.; Prati, L.; Su, D.: Bimetallic gold/palladium catalysts: correlation between nanostructure and synergistic effects. J. Phys. Chem. C 112, 8617–8622 (2008). https://doi.org/10.1021/jp800805e

    Article  Google Scholar 

  41. Bingwa, N.; Patala, R.; Noh, J.H.; Ndolomingo, M.J.; Tetyana, S.; Bewana, S.; Meijboom, R.: Synergistic effects of gold–palladium nanoalloys and reducible supports on the catalytic reduction of 4-nitrophenol. Langmuir 33, 7086–7095 (2017). https://doi.org/10.1021/acs.langmuir.7b00903

    Article  Google Scholar 

  42. Singh, A.K.; Xu, Q.: Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5, 652–676 (2013). https://doi.org/10.1002/cctc.201200591

    Article  Google Scholar 

  43. Jiang, F.; Li, R.; Cai, J.; Xu, W.; Cao, A.; Chen, D.; Zhang, X.; Wang, C.; Shu, C.: Ultrasmall Pd/Au bimetallic nanocrystals embedded in hydrogen-bonded supramolecular structures: facile synthesis and catalytic activities in the reduction of 4-nitrophenol. J. Mater. Chem. A 3, 19433–19438 (2015). https://doi.org/10.1039/C5TA02260F

    Article  Google Scholar 

  44. Ma, T.; Liang, F.; Chen, R.; Liu, S.; Zhang, H.: Synthesis of Au-Pd bimetallic nanoflowers for catalytic reduction of 4-nitrophenol. Nanomaterials 7, 239 (2017). https://doi.org/10.3390/nano7090239

    Article  Google Scholar 

  45. Srisombat, L.; Nonkumwong, J.; Suwannarat, K.; Kuntalue, B.; Ananta, S.: Simple preparation Au/Pd core/shell nanoparticles for 4-nitrophenol reduction. Colloids Surf. A Physicochem. Eng. Asp. 512, 17–25 (2017). https://doi.org/10.1016/j.colsurfa.2016.10.026

    Article  Google Scholar 

  46. Velpula, S.; Beedu, S.R.; Rupula, K.: Bimetallic nanocomposite (Ag–Au, Ag–Pd, Au–Pd) synthesis using gum kondagogu a natural biopolymer and their catalytic potentials in the degradation of 4-nitrophenol. Int. J. Biol. Macromol. 190, 159–169 (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.211

    Article  Google Scholar 

  47. Wang, H.; Wang, C.; Yan, H.; Yi, H.; Lu, J.: Precisely-controlled synthesis of Au@Pd core–shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. J. Catal. 324, 59–68 (2015). https://doi.org/10.1016/j.jcat.2015.01.019

    Article  Google Scholar 

  48. Wang, Z.; Feng, J.; Li, X.; Oh, R.; Shi, D.; Akdim, O.; Xia, M.; Zhao, L.; Huang, X.; Zhang, G.: Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol. J. Colloid Interface Sci. 588, 787–794 (2021). https://doi.org/10.1016/j.jcis.2020.11.112

    Article  Google Scholar 

  49. Hosseinzadeh, R.; Aghili, N.; Tajbakhsh, M.: SBA-15 immobilized phenanthroline-copper (I) complex as a recyclable efficient catalyst for N-arylation of amides and N–H heterocycles with aryl halides. Catal. Lett. 146, 193–203 (2016). https://doi.org/10.1007/s10562-015-1622-4

    Article  Google Scholar 

  50. Hosseinzadeh, R.; Aghili, N.; Mavvaji, M.: Synthesis and characterization of nano-cellulose immobilized phenanthroline-copper (I) complex as a recyclable and efficient catalyst for preparation of diaryl ethers N-aryl amides and N-aryl heterocycles. Polyhedron 213, 115631 (2022). https://doi.org/10.1016/j.poly.2021.115631

    Article  Google Scholar 

  51. Abaszadeh, M.; Hosseinzadeh, R.; Tajbakhsh, M.; Ghasemi, S.: The synthesis of functionalized magnetic graphene oxide with 5-amino-1,10-phenanthroline and investigation of its dual application in CN coupling reactions and adsorption of heavy metal ions. J. Mol. Struct. 1261, 132832 (2022). https://doi.org/10.1016/j.molstruc.2022.132832

    Article  Google Scholar 

  52. Rathore, P.S.; Patidar, R.; Thakore, S.: Nanoparticle-supported and magnetically recoverable organic–inorganic hybrid copper (II) nanocatalyst: a selective and sustainable oxidation protocol with a high turnover number. RSC Adv. 4, 41111–41121 (2014). https://doi.org/10.1039/C4RA06599A

    Article  Google Scholar 

  53. Hosseinzadeh, R.; Mavvaji, M.; Tajbakhsh, M.; Lasemi, Z.: Synthesis and characterization of N-hydroxyphthalimide immobilized on SiO2-coated Fe3O4 nanoparticles as magnetic catalyst for oxidation of benzyl alcohols and hydrocarbons. J. Iran. Chem. Soc. 15, 893–904 (2018). https://doi.org/10.1007/s13738-017-1288-5

    Article  Google Scholar 

  54. Pazoki, F.; Mehraban, J.A.; Shamsayei, M.; Bakhshi, B.; Esfandiarpour, R.; Miraki, M.K.; Heydari, A.: Aza-Michael addition of 5-substituted tetrazole catalysed by a novel nanoparticle solid base catalyst involving a layered zinc hydroxide supported on a ferrite core. ChemistrySelect 4, 2568–2575 (2019). https://doi.org/10.1002/slct.201804070

    Article  Google Scholar 

  55. Mi, F.; Chen, X.; Ma, Y.; Yin, S.; Yuan, F.; Zhang, H.: Facile synthesis of hierarchical core–shell Fe3O4@MgAl-LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols. Chem. Commun. 47, 12804–12806 (2011). https://doi.org/10.1039/C1CC15858A

    Article  Google Scholar 

  56. Sing, K.S.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T.: International union of pure and applied chemistry physical chemistry division reporting physisorption data for gas/soils systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985). https://doi.org/10.1351/pac198557040603

    Article  Google Scholar 

  57. Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Zhang, C.; Cheng, M.; Yi, H.; Liu, X.; Zhou, C.; Xiong, W.; Huang, F.; Cao, W.: Synthetic strategies and application of gold-based nanocatalysts for nitroaromatics reduction. Sci. Total Environ. 652, 93–116 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.215

    Article  Google Scholar 

  58. Camacho-Espinoza, M.; Penieres-Carrillo, J.G.; Rios-Guerra, H.; Lagunas-Rivera, S.; Ortega-Jiménez, F.: An efficient and simple imidazole-hydrazone ligand for palladium-catalyzed Suzuki–Miyaura cross-coupling reactions in water under infrared irradiation. J. Organomet. Chem. 880, 386–391 (2019). https://doi.org/10.1016/j.jorganchem.2018.11.016

    Article  Google Scholar 

  59. Dilauro, G.; Messa, F.; Bona, F.; Perrone, S.; Salomone, A.: Cobalt-catalyzed cross-coupling reactions of aryl-and alkylaluminum derivatives with (hetero) aryl and alkyl bromides. Chem. Commun. 57, 10564–10567 (2021). https://doi.org/10.1039/D1CC04002B

    Article  Google Scholar 

  60. Ren, S.; Zhang, J.; Zhang, J.; Wang, H.; Zhang, W.; Liu, Y.; Liu, M.: Copper/selectfluor-system catalyzed dehydration–oxidation of tertiary cycloalcohols: access to β-substituted cyclohex-2 enones, 4-arylcoumarins, and biaryls. Eur. J. Org. Chem. 2015, 5381–5388 (2015). https://doi.org/10.1002/ejoc.201500610

    Article  Google Scholar 

  61. Hoffmann, I.; Blumenröder, B.; neé Thumann, S.O.; Dommer, S.; Schatz, J.: Suzuki cross-coupling in aqueous media. Green Chem. 17(7), 3844–3857 (2015). https://doi.org/10.1039/C5GC00794A

    Article  Google Scholar 

  62. Han, Y.; Di, J.Q.; Zhao, A.D.; Zhang, Z.H.: Synthesis, characterization and catalytic performance of palladium supported on pyridine-based covalent organic polymer for Suzuki–Miyaura reaction. Appl. Organomet. Chem. 33, e5172 (2019). https://doi.org/10.1002/aoc.5172

    Article  Google Scholar 

  63. Abe, T.; Mino, T.; Watanabe, K.; Yagishita, F.; Sakamoto, M.: Suzuki–Miyaura coupling of aryl sulfonates with arylboronic acids using a morpholine-Pd (OAc)2 catalyst system. Eur. J. Org. Chem. 2014, 3909–3916 (2014). https://doi.org/10.1002/ejoc.201402120

    Article  Google Scholar 

  64. Chen, X.; Qian, D.; Xu, G.; Xu, H.; Dai, J.; Du, Y.: Magnetic Fe3O4 supported PdAu bimetallic nanoparticles with the enhanced catalytic activity for Heck and Suzuki cross-coupling reactions. Colloids Surf. A Physicochem. Eng. Asp. 573, 67–72 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.013

    Article  Google Scholar 

  65. Dong, Z.; Gao, P.; Xiao, Y.; Chen, J.; Wang, W.: Pd–Co nanoparticles supported on calcined Mg–Fe hydrotalcites for the Suzuki–Miyaura reaction in water with high turnover numbers. Catalysts 9, 1061 (2019). https://doi.org/10.3390/catal9121061

    Article  Google Scholar 

  66. Wang, Q.; Jing, X.; Han, J.; Yu, L.; Xu, Q.: Design and fabrication of low-loading palladium nano particles on polyaniline (nano Pd@ PANI): an effective catalyst for Suzuki cross-coupling with high TON. Mater. Lett. 215, 65–67 (2018). https://doi.org/10.1016/j.matlet.2017.12.064

    Article  Google Scholar 

  67. Sahoo, M.; Mansingh, S.; Subudhi, S.; Mohapatra, P.; Parida, K.: A plasmonic AuPd bimetallic nanoalloy decorated over a GO/LDH hybrid nanocomposite via a green synthesis route for robust Suzuki coupling reactions: a paradigm shift towards a sustainable future. Catal. Sci. Technol. 9, 4678–4692 (2019). https://doi.org/10.1039/C9CY01085H

    Article  Google Scholar 

  68. Han, D.; Bao, Z.; Xing, H.; Yang, Y.; Ren, Q.; Zhang, Z.: Fabrication of plasmonic Au–Pd alloy nanoparticles for photocatalytic Suzuki–Miyaura reactions under ambient conditions. Nanoscale 9, 6026–6032 (2017). https://doi.org/10.1039/C7NR01950E

    Article  Google Scholar 

  69. You, B.; Tian, Y.; Wang, B.; Zhu, G.: Porous aromatic frameworks with high Pd nanoparticles loading as efficient catalysts for the Suzuki coupling reaction. J. Colloid Interface Sci. 628, 1023–1032 (2022). https://doi.org/10.1016/j.jcis.2022.08.026

    Article  Google Scholar 

  70. Sahoo, M.; Parida, K.: Noble metal loaded ZnCr-LDH based hybrid material for Suzuki coupling reactions: a comparison study on heterogeneous catalysis with photo catalysis. Mater. Today Proc. 35, 229–232 (2021). https://doi.org/10.1016/j.matpr.2020.04.772

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iran National Science Foundation (99012446) and the Research Council of the University of Mazandaran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Hosseinzadeh.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3974 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, R., Mavvaji, M. & Moradi, I. Synthesis and Characterization of Fe3O4@SiO2@MgAl-LDH@Au.Pd as an Efficient and Magnetically Recyclable Catalyst for Reduction of 4-Nitrophenol and Suzuki Coupling Reactions. Arab J Sci Eng 48, 7525–7541 (2023). https://doi.org/10.1007/s13369-022-07543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07543-5

Keywords

Navigation