Skip to main content
Log in

Toward an Understanding of the Role of Fabrication Conditions During Polymeric Membranes Modification: A Review of the Effect of Titanium, Aluminum, and Silica Nanoparticles on Performance

  • Review Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Polymeric membranes have proven to be an effective method for the treatment of contaminated waters. Many factors influence their performances including the operating parameters, fabrication process and conditions, and their modifications using different additives. Introduced as additives, nanoparticles are capable of enhancing the membrane performance via their intrinsic properties which include their morphology, core size, and chemical nature. Nevertheless, some common problems such as nanoparticle agglomeration or leaching and the formation of defective areas, occur during the membrane fabrication. These issues depend on several factors which were observed to influence the membrane morphology and structure and consequently influence the treatment effectiveness. Accordingly, different strategies were investigated to avoid these issues. In this review paper, the effects of three different nanoparticles namely Titanium, Aluminum, and Silica on the performance of the modified membranes devoted to the treatment of organic waste streams will be thoroughly investigated. In addition, major effects related to the fabrication conditions including various challenges encountered during the membrane manufacturing and the different strategies used to improve performance will be thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Derakhshan, L.R.A.A.: Review on applications of carboxylate–alumoxane nanostructures. Powder Technol. 226, 117–129 (2012)

    Google Scholar 

  2. Cao, X.; Ma, J.; Shi, X.; Ren, Z.: Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 253, 2003–2010 (2006)

    Google Scholar 

  3. Ahmad, A.L.; Majid, M.A.; Ooi, B.S.: Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation. Desalination 268, 266–269 (2011)

    Google Scholar 

  4. Zinadini, S.; Rostami, S.; Vatanpour, V.; Jalilian, E.: Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Memb. Sci. 529, 133–141 (2017)

    Google Scholar 

  5. Alhoshan, M.; Alam, J.; Arockiasamy, L.; Dass, N.A.-H.: Fabrication of polysulfone/ZnO membrane: influence of ZnO nanoparticles on membrane characteristics. Adv. Polym. Technol. 32, 4458 (2013)

    Google Scholar 

  6. Wara, N.M.; Francis, L.F.; Velamakanni, B.V.: Addition of alumina to cellulose acetate membranes. J. Memb. Sci. 104, 43–49 (1995). https://doi.org/10.1016/0376-7388(95)00010-A

    Article  Google Scholar 

  7. Maximous, N.; Nakhla, G.; Wan, W.; Wong, K.: Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J. Memb. Sci. 341, 67–75 (2009)

    Google Scholar 

  8. Zulfikar, M.A.; Wahab Mohammad, A.; Hilal, N.: Preparation and characterization of novel porous PMMA-SiO2 hybrid membranes. Desalination 192, 262–270 (2006)

    Google Scholar 

  9. Ahmad, T.; Guria, C.; Mandal, A.: Optimal synthesis and operation of low-cost polyvinyl chloride/bentonite ultrafiltration membranes for the purification of oilfield produced water. J. Memb. Sci. 564, 859–877 (2018)

    Google Scholar 

  10. Yogarathinam, L.T.; Gangasalam, A.; Ismail, A.F.; Arumugam, S.; Narayanan, A.: Concentration of whey protein from cheese whey effluent using ultrafiltration by combination of hydrophilic metal oxides and hydrophobic polymer. J. Chem. Technol. Biotechnol. 93, 2576–2591 (2018)

    Google Scholar 

  11. Mukherjee, R.; De, S.: Adsorptive removal of phenolic compounds using cellulose acetate phthalate-alumina nanoparticle mixed matrix membrane. J. Hazard. Mater. 265, 8–19 (2014)

    Google Scholar 

  12. Yu, Z.; Liu, X.; Zhao, F.; Liang, X.; Tian, Y.: Fabrication of a low-cost nano-SiO2/PVC composite ultrafiltration membrane and its antifouling performance. J. Appl. Polym. Sci. 132, 1–11 (2015)

    Google Scholar 

  13. Zhang, Y.; Cui, P.; Du, T.; Shan, L.; Wang, Y.: Development of a sulfated Y-doped nonstoichiometric zirconia/polysulfone composite membrane for treatment of wastewater containing oil. Sep. Purif. Technol. 70, 153–159 (2009)

    Google Scholar 

  14. Pei, G.; Cheng, G.; Du, Q.: Preparation of chelating resin filled composite membranes and selective adsorption of Cu(II). J. Memb. Sci. 196, 85–93 (2002)

    Google Scholar 

  15. Liu, X.; Peng, Y.; Ji, S.: A new method to prepare organic-inorganic hybrid membranes. Desalination 221, 376–382 (2008)

    Google Scholar 

  16. Mojtahedi, Y.M.; Mehrnia, M.R.; Homayoonfal, M.: Fabrication of Al2O3/PSf nanocomposite membranes: efficiency comparison of coating and blending methods in modification of filtration performance. Desalin. Water Treat. 51, 6736–6742 (2013)

    Google Scholar 

  17. Ahsani, M.; Yegani, R.: Study on the fouling behavior of silica nanocomposite modified polypropylene membrane in purification of collagen protein. Chem. Eng. Res. Des. 102, 261–273 (2015)

    Google Scholar 

  18. Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N.: Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308, 15–33 (2013)

    Google Scholar 

  19. Bolto, B.; Zhang, J.; Wu, X.; Xie, Z.: A review on current development of membranes for oil removal from wastewaters. Membranes (Basel). 10, 1–18 (2020)

    Google Scholar 

  20. Pinem, J.A.; Wardani, A.K.; Aryanti, P.T.P.; Khoiruddin, K.; Wenten, I.G.: Hydrophilic modification of polymeric membrane using graft polymerization method: a mini review. IOP Conf. Ser. Mater. Sci. Eng. 547, 445–5520 (2019)

    Google Scholar 

  21. Tanudjaja, H.J.; Hejase, C.A.; Tarabara, V.V.; Fane, A.G.; Chew, J.W.: Membrane-based separation for oily wastewater: a practical perspective. Water Res. 156, 347–365 (2019)

    Google Scholar 

  22. Zoubeik, M.; Echakouri, M.; Henni, A.; Salama, A.: Taguchi optimization of operating conditions of a microfiltration alumina ceramic membrane and artificial neural-network modeling. J. Environ. Eng. 148(4), 04022001 (2022)

    Google Scholar 

  23. Salahi, A.; Abbasi, M.; Mohammadi, T.: Permeate flux decline during UF of oily wastewater: experimental and modeling. Desalination 251, 153–160 (2010)

    Google Scholar 

  24. Nazzal, F.F.; Wiesner, M.R.: Microfiltration of emulsions. Water Environ. Res. 68, 1187–1191 (1996)

    Google Scholar 

  25. Salama, A.; Zoubeik, M.; Henni, A.; Ng, K.T.W.; Ibrahim, H.: On the design of sustainable antifouling system for the crossflow filtration of oily water systems: a multicontinuum and CFD investigation of the periodic feed pressure technique. Sci. Total Environ. 698, 134288 (2020)

    Google Scholar 

  26. Monfared, M.A.; Kasiri, N.; Mohammadi, T.: Microscopic modeling of critical pressure of permeation in oily waste water treatment: via membrane filtration. RSC Adv. 6, 71744–71756 (2016)

    Google Scholar 

  27. Darvishzadeh, T.; Priezjev, N.V.: Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions. J. Memb. Sci. 423–424, 468–476 (2012)

    Google Scholar 

  28. Darvishzadeh, T.; Tarabara, V.V.; Priezjev, N.V.: Oil droplet behavior at a pore entrance in the presence of crossflow: implications for microfiltration of oil-water dispersions. J. Memb. Sci. 447, 442–451 (2013)

    Google Scholar 

  29. Darvishzadeh, T.; Bhattarai, B.; Priezjev, N.V.: The critical pressure for microfiltration of oil-in-water emulsions using slotted-pore membranes. J. Memb. Sci. 563, 610–616 (2018)

    Google Scholar 

  30. Tummons, E.N.; Tarabara, V.V.; Chew, J.W.; Fane, A.G.: Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil-water emulsions. Annu. Meet. North Am. Membr. Soc. NAMS 500, 90–91 (2016)

    Google Scholar 

  31. Zoubeik, M.; Salama, A.; Henni, A.: A novel antifouling technique for the crossflow filtration using porous membranes: experimental and CFD investigations of the periodic feed pressure technique. Water Res. 146, 159–176 (2018)

    Google Scholar 

  32. Asghari, M.; Dashti, A.; Rezakazemi, M.; Jokar, E.; Halakoei, H.: Application of neural networks in membrane separation. Rev. Chem. Eng. 36, 265–310 (2020)

    Google Scholar 

  33. Zare, M.; Zokaee Ashtiani, F.; Fouladitajar, A.: CFD modeling and simulation of concentration polarization in microfiltration of oil-water emulsions; application of an Eulerian multiphase model. Desalination 324, 37–47 (2013)

    Google Scholar 

  34. Moons, K.; Van der Bruggen, B.: Removal of micropollutants during drinking water production from surface water with nanofiltration. Desalination 199, 245–247 (2006)

    Google Scholar 

  35. Acero, J.L.; Benitez, F.J.; Real, F.J.; García, C.: Removal of phenyl-urea herbicides in natural waters by UF membranes: permeate flux, analysis of resistances and rejection coefficients. Sep. Purif. Technol. 65, 322–330 (2009)

    Google Scholar 

  36. Gui, M.; Smuleac, V.; Ormsbee, L.E.; Sedlak, D.L.; Bhattacharyya, D.: Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water. J. Nanoparticle Res. 14, 1–16 (2012)

    Google Scholar 

  37. Molinari, R.; Poerio, T.: Preparation, characterisation and testing of catalytic polymeric membranes in the oxidation of benzene to phenol. Appl. Catal. A Gen. 358, 119–128 (2009)

    Google Scholar 

  38. Ebert, K.; Fritsch, D.; Koll, J.; Tjahjawiguna, C.: Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes. J. Memb. Sci. 233, 71–78 (2004)

    Google Scholar 

  39. Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K.: Progress in the production and modification of PVDF membranes. J. Memb. Sci. 375, 1–27 (2011)

    Google Scholar 

  40. Yan, L.; Li, Y.S.; Xiang, C.B.: Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer (Guildf). 46, 7701–7706 (2005)

    Google Scholar 

  41. Rahimpour, A.; Madaeni, S.S.; Mehdipour-Ataei, S.: Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes. J. Memb. Sci. 311, 349–359 (2008)

    Google Scholar 

  42. Moradi, G.; Zinadini, S.; Rajabi, L.; Dadari, S.: Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors. Appl. Surf. Sci. 427, 830–842 (2018)

    Google Scholar 

  43. Amin, I.N.H.M.; Mohammad, A.W.; Markom, M.; Peng, L.C.; Hilal, N.: Flux decline study during ultrafiltration of glycerin-rich fatty acid solutions. J. Memb. Sci. 351, 75–86 (2010)

    Google Scholar 

  44. Shashidhara, G.M.; Guruprasad, K.H.; Varadarajulu, A.: Miscibility studies on blends of cellulose acetate and nylon 6. Eur. Polym. J. 38, 611–614 (2002)

    Google Scholar 

  45. Yun, Y.; Tian, Y.; Shi, G.; Li, J.; Chen, C.: Preparation, morphologies and properties for flat sheet PPESK ultrafiltration membranes. J. Memb. Sci. 270, 146–153 (2006)

    Google Scholar 

  46. Zhao, S.; Wang, P.; Wang, C.; Sun, X.; Zhang, L.: Thermostable PPESK/TiO2 nanocomposite ultrafiltration membrane for high temperature condensed water treatment. Desalination 299, 35–43 (2012)

    Google Scholar 

  47. Ghazanfari, D.; Bastani, D.; Mousavi, S.A.: Preparation and characterization of poly (vinyl chloride) (PVC) based membrane for wastewater treatment. J. Water Process Eng. 16, 98–107 (2017)

    Google Scholar 

  48. Behboudi, A.; Jafarzadeh, Y.; Yegani, R.: Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes. Chem. Eng. Res. Des. 114, 96–107 (2016)

    Google Scholar 

  49. Landry, C.J.T.; Coltrain, B.K.; Wesson, J.A.; Zumbulyadis, N.; Lippert, J.L.: In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions. Polymer (Guildf). 33, 1496–1506 (1992)

    Google Scholar 

  50. Zularisam, A.W.; Ismail, A.F.; Salim, R.: Behaviours of natural organic matter in membrane filtration for surface water treatment-a review. Desalination 194, 211–231 (2006)

    Google Scholar 

  51. Ariono, D.; Wardani, A.K.; Widodo, S.; Aryanti, P.T.P.; Wenten, I.G.: Fouling mechanism in ultrafiltration of vegetable oil. Mater. Res. Express. 5, 4450 (2018)

    Google Scholar 

  52. Echakouri, M.; Zoubiek, M.; Salama, A.; Henni, A.; Elgharbi, H.: Recent advances in the physical methods to combat membrane fouling: an emphasis on the periodic feed pressure technique. Sustain. Energy-Water-Environ. Nexus Deserts. 3, 197–207 (2022)

    Google Scholar 

  53. Nunes, S.P.; Peinemann, K.V.: Ultrafiltration membranes from PVDF/PMMA blends. J. Memb. Sci. 73, 25–35 (1992)

    Google Scholar 

  54. Brink, L.E.S.; Elbers, S.J.G.; Robbertsen, T.; Both, P.: The anti-fouling action of polymers preadsorbed on ultrafiltration and microfiltration membranes. J. Memb. Sci. 76, 281–291 (1993)

    Google Scholar 

  55. Chen, H.; Kong, L.; Wang, Y.: Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition. J. Memb. Sci. 487, 109–116 (2015)

    Google Scholar 

  56. Zhang, C.; Yang, F.; Wang, W.; Chen, B.; Zhang, F.: Preparation and characterization of surface modification of non-woven fabric by PVA. Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban). J. Liaoning Tech. Univ. Natl. Sci. Ed. 27, 318–320 (2008)

    Google Scholar 

  57. Wang, C.; Feng, R.; Yang, F.: Enhancing the hydrophilic and antifouling properties of polypropylene nonwoven fabric membranes by the grafting of poly(N-vinyl-2-pyrrolidone) via the ATRP method. J. Colloid Interface Sci. 357, 273–279 (2011)

    Google Scholar 

  58. Wang, Y.; Kim, J.H.; Choo, K.H.; Lee, Y.S.; Lee, C.H.: Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J. Memb. Sci. 169, 269–276 (2000)

    Google Scholar 

  59. Gu, H.; Wu, J.; Chan, P.; Turcotte, G.; Ye, T.: Hydrophilicity modification of polypropylene microfiltration membrane by ozonation. Chem. Eng. Res. Des. 90, 229–237 (2012)

    Google Scholar 

  60. Zhao, C.; Xue, J.; Ran, F.; Sun, S.: Modification of polyethersulfone membranes-a review of methods. Prog. Mater. Sci. 58, 76–150 (2013)

    Google Scholar 

  61. Nady, N.; Franssen, M.C.R.; Zuilhof, H.; Eldin, M.S.M.; Boom, R.; Schroën, K.: Modification methods for poly(arylsulfone) membranes: a mini-review focusing on surface modification. Desalination 275, 1–9 (2011)

    Google Scholar 

  62. Masuoka, T.; Hirasa, O.; Suda, Y.; Ohnishi, M.: Plasma surface graft of N, N-dimethylacrylamide onto porous polypropylene membrane. Int. J. Radiat. Appl. Instrum. 33, 421–427 (1989)

    Google Scholar 

  63. Kramer, P.W.; Yeh, Y.S.; Yasuda, H.: Low temperature plasma for the preparation of separation membranes. J. Memb. Sci. 46, 1–28 (1989)

    Google Scholar 

  64. Adibah, R.A.R.; Harun, Z.; Hafeez, A.F.; Hussin, R.; Faiz, M.Z.M.; Sazali, N.; Syamsul, B.S.; Riduan, J.M.; Misdan, N.; Kamdi, Z.; Hanis, H.H.N.: Polymer mixed membrane with microflower TiO2 as additive for photocatalyst in organic compound. Mater. Today Proc. 46, 2122–2130 (2021)

    Google Scholar 

  65. Rabiee, H.; Farahani, M.H.D.A.; Vatanpour, V.: Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. J. Memb. Sci. 472, 185–193 (2014)

    Google Scholar 

  66. Sakarkar, S.; Muthukumaran, S.; Jegatheesan, V.: Tailoring the effects of titanium dioxide (TiO2) and polyvinyl alcohol (pva) in the separation and antifouling performance of thin-film composite polyvinylidene fluoride (pvdf) membrane. Membranes (Basel). 11(4), 241 (2021)

    Google Scholar 

  67. Subramaniam, M.N.; Goh, P.S.; Lau, W.J.; Ismail, A.F.: Exploring the potential of photocatalytic dual layered hollow fiber membranes incorporated with hybrid titania nanotube-boron for agricultural wastewater reclamation. Sep. Purif. Technol. 275, 119136 (2021)

    Google Scholar 

  68. Subramaniam, M.N.; Goh, P.S.; Lau, W.J.; Tan, Y.H.; Ng, B.C.; Ismail, A.F.: Hydrophilic hollow fiber PVDF ultrafiltration membrane incorporated with titanate nanotubes for decolourization of aerobically-treated palm oil mill effluent. Chem. Eng. J. 316, 101–110 (2017)

    Google Scholar 

  69. Subramaniam, M.N.; Goh, P.S.; Lau, W.J.; Abidin, M.N.Z.; Mansur, S.; Ng, B.C.; Ismail, A.F.: Optimizing the spinning parameter of titania nanotube-boron incorporated PVDF dual-layered hollow fiber membrane for synthetic AT-POME treatment. J. Water Process Eng. 36, 101372 (2020)

    Google Scholar 

  70. Dasgupta, J.; Chakraborty, S.; Sikder, J.; Kumar, R.; Pal, D.; Curcio, S.; Drioli, E.: The effects of thermally stable titanium silicon oxide nanoparticles on structure and performance of cellulose acetate ultrafiltration membranes. Sep. Purif. Technol. 133, 55–68 (2014)

    Google Scholar 

  71. Matindi, C.N.; Hu, M.; Kadanyo, S.; Ly, Q.V.; Gumbi, N.N.; Dlamini, D.S.; Li, J.; Hu, Y.; Cui, Z.; Li, J.: Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J. Memb. Sci. 620, 118868 (2021)

    Google Scholar 

  72. Abedini, R.; Mousavi, S.M.; Aminzadeh, R.: A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination 277, 40–45 (2011)

    Google Scholar 

  73. Yuliwati, E.; Ismail, A.F.; Matsuura, T.; Kassim, M.A.; Abdullah, M.S.: Characterization of surface-modified porous PVDF hollow fibers for refinery wastewater treatment using microscopic observation. Desalination 283, 206–213 (2011)

    Google Scholar 

  74. Shaban, M.; AbdAllah, H.; Said, L.; Hamdy, H.S.; Abdel Khalek, A.: Titanium dioxide nanotubes embedded mixed matrix PES membranes characterization and membrane performance. Chem. Eng. Res. Des. 95, 307–316 (2015)

    Google Scholar 

  75. Padaki, M.; Emadzadeh, D.; Masturra, T.; Ismail, A.F.: Antifouling properties of novel PSf and TNT composite membrane and study of effect of the flow direction on membrane washing. Desalination 362, 141–150 (2015)

    Google Scholar 

  76. Teow, Y.H.; Ooi, B.S.; Ahmad, A.L.; Lim, J.K.: Investigation of anti-fouling and uv-cleaning properties of PVDF/TiO2 mixed-matrix membrane for humic acid removal. Membranes (Basel) 11, 1–22 (2021)

    Google Scholar 

  77. Arsuaga, M.; Sotto, A.; del Rosario, G.; Martínez, A.; Molina, S.; Teli, S.B.; de Abajo, J.: Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Memb. Sci. 428, 131–141 (2013)

    Google Scholar 

  78. Vatanpour, V.; Madaeni, S.S.; Khataee, A.R.; Salehi, E.; Zinadini, S.; Monfared, H.A.: TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292, 19–29 (2012)

    Google Scholar 

  79. Baroña, G.N.B.; Choi, M.; Jung, B.: High permeate flux of PVA/PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes. J. Colloid Interface Sci. 386, 189–197 (2012)

    Google Scholar 

  80. Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R.: Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-a review. Prog. Polym. Sci. 38, 1232–1261 (2013)

    Google Scholar 

  81. Rajaeian, B.; Heitz, A.; Tade, M.O.; Liu, S.: Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J. Memb. Sci. 485, 48–59 (2015)

    Google Scholar 

  82. Al-Gamal, A.Q.; Falath, W.S.; Saleh, T.A.: Enhanced efficiency of polyamide membranes by incorporating TiO2-Graphene oxide for water purification. J. Mol. Liq. 323, 114922 (2021)

    Google Scholar 

  83. Molinari, R.; Pirillo, F.; Falco, M.; Loddo, V.; Palmisano, L.: Photocatalytic degradation of dyes by using a membrane reactor. Chem. Eng. Process. Process Intensif. 43, 1103–1114 (2004)

    Google Scholar 

  84. Erdei, L.; Arecrachakul, N.; Vigneswaran, S.: A combined photocatalytic slurry reactor-immersed membrane module system for advanced wastewater treatment. Sep. Purif. Technol. 62, 382–388 (2008)

    Google Scholar 

  85. Kwak, S.Y.; Kim, S.H.; Kim, S.S.: Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol. 35, 2388–2394 (2001)

    Google Scholar 

  86. Li, J.F.; Xu, Z.L.; Yang, H.; Yu, L.Y.; Liu, M.: Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci. 255, 4725–4732 (2009)

    Google Scholar 

  87. Bae, T.H.; Kim, I.C.; Tak, T.M.: Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J. Memb. Sci. 275, 1–5 (2006)

    Google Scholar 

  88. Mills, A.; Le Hunte, S.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108, 1–35 (1997)

    Google Scholar 

  89. Kim, S.H.; Kwak, S.Y.; Sohn, B.H.; Park, T.H.: Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Memb. Sci. 211, 157–165 (2003)

    Google Scholar 

  90. Li, J.H.; Xu, Y.Y.; Zhu, L.P.; Wang, J.H.; Du, C.H.: Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Memb. Sci. 326, 659–666 (2009)

    Google Scholar 

  91. Rahimpour, A.; Jahanshahi, M.; Mollahosseini, A.; Rajaeian, B.: Structural and performance properties of UV-assisted TiO 2 deposited nano-composite PVDF/SPES membranes. Desalination 285, 31–38 (2012)

    Google Scholar 

  92. Teow, Y.H.; Ahmad, A.L.; Lim, J.K.; Ooi, B.S.: Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method. Desalination 295, 61–69 (2012)

    Google Scholar 

  93. Alsohaimi, I.H.; Kumar, M.; Algamdi, M.S.; Khan, M.A.; Nolan, K.; Lawler, J.: Antifouling hybrid ultrafiltration membranes with high selectivity fabricated from polysulfone and sulfonic acid functionalized TiO2 nanotubes. Chem. Eng. J. 316, 573–583 (2017)

    Google Scholar 

  94. Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S.; Feyzi, M.; Bahnemann, D.W.: A novel photocatalytic self-cleaning PES nanofiltration membrane incorporating triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for post treatment of biologically treated palm oil mill effluent. React. Funct. Polym. 127, 139–152 (2018)

    Google Scholar 

  95. Pan, Y.; Wang, T.; Sun, H.; Wang, W.: Preparation and application of titanium dioxide dynamic membranes in microfiltration of oil-in-water emulsions. Sep. Purif. Technol. 89, 78–83 (2012)

    Google Scholar 

  96. Shahruddin, M.Z.; Zakaria, N.; Diana Junaidi, N.F.; Alias, N.H.; Othman, N.H.: Study of the effectiveness of titanium dioxide (TiO2) nanoparticle in polyethersulfone (PES) composite membrane for removal of oil in oily wastewater. J. Appl. Membr. Sci. Technol. 19, 33–42 (2017)

    Google Scholar 

  97. Lukka Thuyavan, Y.; Arthanareeswaran, G.; Ismail, A.F.; Goh, P.S.; Shankar, M.V.; Lakshmana Reddy, N.: Treatment of synthetic textile dye effluent using hybrid adsorptive ultrafiltration mixed matrix membranes. Chem. Eng. Res. Des. 159, 92–104 (2020)

    Google Scholar 

  98. Hamta, A.; Zokaee Ashtiani, F.; Karimi, M.; Safikhani, A.: Manipulating of polyacrylonitrile membrane porosity via SiO2 and TiO2 nanoparticles: thermodynamic and experimental point of view. Polym. Adv. Technol. 32, 872–885 (2021)

    Google Scholar 

  99. Tang, D.; Yuan, R.; Chai, Y.: Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clin. Chem. 53, 1323–1329 (2007)

    Google Scholar 

  100. Lin, J.; Ye, W.; Zhong, K.; Shen, J.; Jullok, N.; Sotto, A.; Van der Bruggen, B.: Enhancement of polyethersulfone (PES) membrane doped by monodisperse Stöber silica for water treatment. Chem. Eng. Process. Process Intensif. 107, 194–205 (2016)

    Google Scholar 

  101. Alhumaidi, M.S.; Arshad, F.; Aubry, C.; Ravaux, F.; McElhinney, J.; Hasan, A.; Zou, L.: Electrostatically coupled SiO2 nanoparticles/poly (L-DOPA) antifouling coating on a nanofiltration membrane. Nanotechnology 31(27), 275602 (2020)

    Google Scholar 

  102. Zhang, Y.; Shan, L.; Tu, Z.; Zhang, Y.: Preparation and characterization of novel Ce-doped nonstoichiometric nanosilica/polysulfone composite membranes. Sep. Purif. Technol. 63, 207–212 (2008)

    Google Scholar 

  103. Chen, W.; Su, Y.; Zhang, L.; Shi, Q.; Peng, J.; Jiang, Z.: In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. J. Memb. Sci. 348, 75–83 (2010). https://doi.org/10.1016/j.memsci.2009.10.042

    Article  Google Scholar 

  104. Jin, L.M.; Yu, S.L.; Shi, W.X.; Yi, X.S.; Sun, N.; Ge, Y.L.; Ma, C.: Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination. Polymer (Guildf). 53, 5295–5303 (2012)

    Google Scholar 

  105. Ghandashtani, M.B.; Ashtiani, F.Z.; Karimi, M.; Fouladitajar, A.: A novel approach to fabricate high performance nano-SiO2 embedded PES membranes for microfiltration of oil-in-water emulsion. Appl. Surf. Sci. 349, 393–402 (2015)

    Google Scholar 

  106. Liao, C.; Zhao, J.; Yu, P.; Tong, H.; Luo, Y.: Synthesis and characterization of low content of different SiO2 materials composite poly (vinylidene fluoride) ultrafiltration membranes. Desalination 285, 117–122 (2012)

    Google Scholar 

  107. Kumar, S.; Guria, C.; Mandal, A.: Synthesis, characterization and performance studies of polysulfone/bentonite nanoparticles mixed-matrix ultra-filtration membranes using oil field produced water. Sep. Purif. Technol. 150, 145–158 (2015)

    Google Scholar 

  108. Muhamad, M.S.; Salim, M.R.; Lau, W.-J.: Surface modification of SiO2 nanoparticles and its impact on the properties of PES-based hollow fiber membrane. RSC Adv. 5, 58644–58654 (2015)

    Google Scholar 

  109. Zhang, Y.; Liu, P.: Polysulfone(PSF) composite membrane with micro-reaction locations (MRLs) made by doping sulfated TiO2 deposited on SiO2 nanotubes (STSNs) for cleaning wastewater. J. Memb. Sci. 493, 275–284 (2015)

    Google Scholar 

  110. Zhang, Y.; Liu, F.; Lu, Y.; Zhao, L.; Song, L.: Investigation of phosphorylated TiO2-SiO2 particles/polysulfone composite membrane for wastewater treatment. Desalination 324, 118–126 (2013)

    Google Scholar 

  111. Li, X.; Nayak, K.; Stamm, M.; Tripathi, B.P.: Zwitterionic silica nanogel-modified polysulfone nanoporous membranes formed by in-situ method for water treatment. Chemosphere 280, 130615 (2021)

    Google Scholar 

  112. Zhang, Y.; Jin, Z.; Sunarso, J.; Li, J.: Development of nonstoichiometric silica with multi-active groups/polysulfone composite membranes for wastewater containing oil. Chem. Eng. J. 170, 14–20 (2011)

    Google Scholar 

  113. Alkindy, M.B.; Naddeo, V.; Banat, F.; Hasan, S.W.: Synthesis of polyethersulfone (PES)/GO-SiO2 mixed matrix membranes for oily wastewater treatment. Water Sci. Technol. 81, 1354–1364 (2020)

    Google Scholar 

  114. Yu, L.Y.; Xu, Z.L.; Shen, H.M.; Yang, H.: Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J. Memb. Sci. 337, 257–265 (2009)

    Google Scholar 

  115. Hu, N.; Xiao, T.; Cai, X.; Ding, L.; Fu, Y.; Yang, X.: Preparation and characterization of hydrophilically modified PVDF membranes by a novel nonsolvent thermally induced phase separation method. Membranes (Basel). 6, 445 (2016)

    Google Scholar 

  116. Huang, J.; Zhang, K.; Wang, K.; Xie, Z.; Ladewig, B.; Wang, H.: Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Memb. Sci. 423–424, 362–370 (2012)

    Google Scholar 

  117. Wu, H.; Mansouri, J.; Chen, V.: Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes. J. Memb. Sci. 433, 135–151 (2013)

    Google Scholar 

  118. Hamzah, N.; Nagarajah, M.; Leo, C.P.: Membrane distillation of saline and oily water using nearly superhydrophobic PVDF membrane incorporated with SiO2 nanoparticles. Water Sci. Technol. 78, 2532–2541 (2018)

    Google Scholar 

  119. Ananth, A.; Arthanareeswaran, G.; Wang, H.: The influence of tetraethylorthosilicate and polyethyleneimine on the performance of polyethersulfone membranes. Desalination 287, 61–70 (2012)

    Google Scholar 

  120. Song, H.J.; Kim, C.K.: Fabrication and properties of ultrafiltration membranes composed of polysulfone and poly(1-vinylpyrrolidone) grafted silica nanoparticles. J. Memb. Sci. 444, 318–326 (2013)

    Google Scholar 

  121. Ang, M.B.M.Y.; Trilles, C.A.; De Guzman, M.R.; Pereira, J.M.; Aquino, R.R.; Huang, S.H.; Hu, C.C.; Lee, K.R.; Lai, J.Y.: Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles. Sep. Purif. Technol. 224, 113–120 (2019)

    Google Scholar 

  122. Wu, H.; Huang, J.; Liu, Y.: Polysulfone ultrafiltration membrane incorporated with Ag-SiO2 nanohybrid for effective fouling control. J. Water Health. 15, 341–352 (2017)

    Google Scholar 

  123. Demirel, E.; Dadashov, S.: Fabrication of a novel PVDF based silica coated multi-walled carbon nanotube embedded membrane with improved filtration performance. Chem. Eng. Commun. 209(8), 1009–1034 (2021)

    Google Scholar 

  124. Homayoonfal, M.; Mehrnia, M.R.; Rahmani, S.; Mohades Mojtahedi, Y.: Fabrication of alumina/polysulfone nanocomposite membranes with biofouling mitigation approach in membrane bioreactors. J. Ind. Eng. Chem. 22, 357–367 (2015)

    Google Scholar 

  125. Ayaz, M.; Muhammad, A.; Younas, M.; Khan, A.L.; Rezakazemi, M.: Enhanced water flux by fabrication of polysulfone/alumina nanocomposite membrane for copper(II) removal. Macromol. Res. 27, 565–571 (2019)

    Google Scholar 

  126. Etemadi, H.; Qazvini, H.; Shokri, E.: Effect of coagulation treatment on antifouling properties of PVC nanocomposite membrane in a submerged membrane system for water treatment. Water Sci. Eng. 14(4), 295–303 (2021)

    Google Scholar 

  127. Delavar, M.; Bakeri, G.; Hosseini, M.: Fabrication of polycarbonate mixed matrix membranes containing hydrous manganese oxide and alumina nanoparticles for heavy metal decontamination: characterization and comparative study. Chem. Eng. Res. Des. 120, 240–253 (2017)

    Google Scholar 

  128. Qin, J.J.; Oo, M.H.; Cao, Y.M.; Lee, L.S.: Development of a LCST membrane forming system for cellulose acetate ultrafiltration hollow fiber. Sep. Purif. Technol. 42, 291–295 (2005)

    Google Scholar 

  129. Liu, F.; Abed, M.R.M.; Li, K.: Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3. J. Memb. Sci. 366, 97–103 (2011)

    Google Scholar 

  130. Garcia-Ivars, J.; Iborra-Clar, M.I.; Alcaina-Miranda, M.I.; Mendoza-Roca, J.A.; Pastor-Alcañiz, L.: Development of fouling-resistant polyethersulfone ultrafiltration membranes via surface UV photografting with polyethylene glycol/aluminum oxide nanoparticles. Sep. Purif. Technol. 135, 88–99 (2014)

    Google Scholar 

  131. Gohari, B.; Abu-Zahra, N.: Polyethersulfone membranes prepared with 3-aminopropyltriethoxysilane modified alumina nanoparticles for Cu(II) removal from water. ACS Omega 3, 10154–10162 (2018)

    Google Scholar 

  132. Dai, J.; Xiao, K.; Dong, H.; Liao, W.; Tang, X.; Zhang, Z.; Cai, S.: Preparation of Al2O3/PU/PVDF composite membrane and performance comparison with PVDF membrane, PU/PVDF blending membrane, and Al2O3/PVDF hybrid membrane. Desalin. Water Treat. 57, 487–494 (2016)

    Google Scholar 

  133. Etemadi, H.; Afsharkia, S.; Zinatloo-Ajabshir, S.; Shokri, E.: Effect of alumina nanoparticles on the antifouling properties of polycarbonate-polyurethane blend ultrafiltration membrane for water treatment. Polym. Eng. Sci. 61, 2364–2375 (2021)

    Google Scholar 

  134. Junaidi, N.F.D.; Othman, N.H.; Shahruddin, M.Z.; Alias, N.H.; Lau, W.J.; Ismail, A.F.: Effect of graphene oxide (GO) and polyvinylpyrollidone (PVP) additives on the hydrophilicity of composite polyethersulfone (PES) membrane. Malaysian J. Fundam. Appl. Sci. 15, 361–366 (2019)

    Google Scholar 

  135. Sali, S.; Mackey, H.R.; Abdala, A.A.: Effect of graphene oxide synthesis method on properties and performance of polysulfone-graphene oxide mixed matrix membranes. Nanomaterials 9(5), 769 (2019)

    Google Scholar 

  136. Jamshidi, G.R.; Korminouri, F.; Lau, W.J.; Ismail, A.F.; Matsuura, T.; Chowdhury, M.N.K.; Halakoo, E.; Jamshidi, G.M.S.: A novel super-hydrophilic PSf/HAO nanocomposite ultrafiltration membrane for efficient separation of oil/water emulsion. Sep. Purif. Technol. 150, 13–20 (2015)

    Google Scholar 

  137. Rabajczyk, A.; Zielecka, M.; Cygańczuk, K.; Pastuszka, Ł; Jurecki, L.: Nanometals-containing polymeric membranes for purification processes. Materials (Basel). 14, 1–30 (2021)

    Google Scholar 

  138. Sherugar, P.; Naik, N.S.; Padaki, M.; Nayak, V.; Gangadharan, A.; Nadig, A.R.; Déon, S.: Fabrication of zinc doped aluminium oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal. Chemosphere 275, 130024 (2021)

    Google Scholar 

  139. Ishak, N.F.; Hashim, N.A.; Othman, M.H.D.: Antifouling properties of hollow fibre alumina membrane incorporated with graphene oxide frameworks. J. Environ. Chem. Eng. 8(4), 104059 (2020)

    Google Scholar 

  140. Pang, R.; Li, J.; Wei, K.; Sun, X.; Shen, J.; Han, W.; Wang, L.: In situ preparation of Al-containing PVDF ultrafiltration membrane via sol-gel process. J. Colloid Interface Sci. 364, 373–378 (2011)

    Google Scholar 

  141. Wang, P.; Wang, F.; Jiang, H.; Zhang, Y.; Zhao, M.; Xiong, R.; Ma, J.: Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. Water Res. 175, 115649 (2020)

    Google Scholar 

  142. Yan, L.; Hong, S.; Li, M.L.; Li, Y.S.: Application of the Al2O3-PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep. Purif. Technol. 66, 347–352 (2009)

    Google Scholar 

  143. Zhang, Y.; Zhao, H.: Formation of phosphorylated ZrxSi1−xO2/Al2O3 self-assembled membrane for cleaning oily seawater. J. Memb. Sci. 536, 28–36 (2017)

    Google Scholar 

  144. Yi, X.S.; Yu, S.L.; Shi, W.X.; Wang, S.; Sun, N.; Jin, L.M.; Wang, X.; Sun, L.P.: Hydrodynamics behaviour of oil field wastewater advanced treatment by ultrafiltration process. Desalination 305, 12–16 (2012)

    Google Scholar 

  145. Yi, X.S.; Yu, S.L.; Shi, W.X.; Sun, N.; Jin, L.M.; Wang, S.; Zhang, B.; Ma, C.; Sun, L.P.: The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3. Desalination 281, 179–184 (2011)

    Google Scholar 

  146. Lee, J.; Chae, H.R.; Won, Y.J.; Lee, K.; Lee, C.H.; Lee, H.H.; Kim, I.C.; Lee, J.: min: Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Memb. Sci. 448, 223–230 (2013)

    Google Scholar 

  147. Manjula, S.; Kumar, S.M.; Raichur, A.M.; Madhu, G.M.; Suresh, R.; Raj, M.A.L.A.: A sedimentation study to optimize the dispersion of alumina nanoparticles in water. Cerâmica 51, 121–127 (2005)

    Google Scholar 

  148. Zych, Ł; Osyczka, A.M.; Łacz, A.; Różycka, A.; Niemiec, W.; Rapacz-Kmita, A.; Dzierzkowska, E.; Stodolak-Zych, E.: How surface properties of silica nanoparticles influence structural, microstructural and biological properties of polymer nanocomposites. Materials (Basel). 14, 1–17 (2021)

    Google Scholar 

  149. Hamid, N.A.A.; Ismail, A.F.; Matsuura, T.; Zularisam, A.W.; Lau, W.J.; Yuliwati, E.; Abdullah, M.S.: Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination 273, 85–92 (2011)

    Google Scholar 

  150. Rajabzadeh, S.; Liang, C.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H.: Effect of additives on the morphology and properties of poly(vinylidene fluoride) blend hollow fiber membrane prepared by the thermally induced phase separation method. J. Memb. Sci. 423–424, 189–194 (2012)

    Google Scholar 

  151. Li, H.; Bin, S.W.Y.; Zhang, Y.F.; Liu, D.Q.; Liu, X.F.: Effects of additives on the morphology and performance of PPTA/PVDF in situ blend UF membrane. Polymers (Basel). 6, 1846–1861 (2014)

    Google Scholar 

  152. Kim, I.C.; Lee, K.H.: Effect of poly(ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation. J. Memb. Sci. 230, 183–188 (2004)

    Google Scholar 

  153. Jung, B.; Joon, K.Y.; Kim, B.; Rhee, H.W.: Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J. Memb. Sci. 243, 45–57 (2004)

    Google Scholar 

  154. Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V.: Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011)

    Google Scholar 

  155. Boshrouyeh Ghandashtani, M.; Tavangar, T.; Zokaee Ashtiani, F.; Karimi, M.; Fouladitajar, A.: Experimental investigation and mathematical modeling of nano-composite membrane fabrication process: focus on the role of solvent type. Asia-Pacific J. Chem. Eng. 13, e2260 (2018)

    Google Scholar 

  156. Pinnau, I.; Koros, W.J.: Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J. Appl. Polym. Sci. 43, 1491–1502 (1991)

    Google Scholar 

  157. Kawakami, H.; Mikawa, M.; Nagaoka, S.: Formation of surface skin layer of asymmetric polyimide membranes and their gas transport properties. J. Memb. Sci. 137, 241–250 (1997)

    Google Scholar 

  158. Izzati, A.R.N.; Hatim, M.D.I.; Hasbullah, H.; Rashid, A.H.: A morphology studies on effect of a coagulation bath mediums as the phase inversion parameter for poly (Vinylidene Fluoride) (Pvdf) membranes. Asean J. Chem. Eng. 15, 11–19 (2015)

    Google Scholar 

  159. Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K.: Effect of molecular weight of PEG on membrane morphology and transport properties. J. Memb. Sci. 309, 209–221 (2008)

    Google Scholar 

  160. Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K.: Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J. Memb. Sci. 315, 36–47 (2008)

    Google Scholar 

  161. Zhou, R.; Ren, P.F.; Yang, H.C.; Xu, Z.K.: Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. J. Memb. Sci. 466, 18–25 (2014)

    Google Scholar 

  162. Akar, N.; Asar, B.; Dizge, N.; Koyuncu, I.: Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J. Memb. Sci. 437, 216–226 (2013)

    Google Scholar 

  163. Wan Ikhsan, S.N.; Yusof, N.; Aziz, F.; Misdan, N.; Ismail, A.F.; Lau, W.J.; Jaafar, J.; Wan Salleh, W.N.; Hayati Hairom, N.H.: Efficient separation of oily wastewater using polyethersulfone mixed matrix membrane incorporated with halloysite nanotube-hydrous ferric oxide nanoparticle. Sep. Purif. Technol. 199, 161–169 (2018)

    Google Scholar 

  164. Persson, K.M.; Gekas, V.; Trägårdh, G.: Study of membrane compaction and its influence on ultrafiltration water permeability. J. Memb. Sci. 100, 155–162 (1995)

    Google Scholar 

  165. Xu, J.; Tang, Y.; Wang, Y.; Shan, B.; Yu, L.; Gao, C.: Effect of coagulation bath conditions on the morphology and performance of PSf membrane blended with a capsaicin-mimic copolymer. J. Memb. Sci. 455, 121–130 (2014)

    Google Scholar 

  166. Hao, J.; An, F.; Yu, Y.; Zhou, P.; Liu, Y.; Lu, C.: Effect of coagulation conditions on solvent diffusions and the structures and tensile properties of solution spun polyacrylonitrile fibers. J. Appl. Polym. Sci. 134, 552 (2017)

    Google Scholar 

  167. Zuo, D.Y.; Zhu, B.K.; Cao, J.H.; Xu, Y.Y.: Influence of alcohol-based nonsolvents on the formation and morphology of PVDF membranes in phase inversion process. Chin. J. Polym. Sci. 24, 281–289 (2006)

    Google Scholar 

  168. Yonita, S.; Sriani, T.; Mahardika, M.; Prihandana, G.S.: Effect of non-solvent concentration in the coagulation bath on water permeability of PES membrane. AIP Conf. Proc. 2314, 550 (2020)

    Google Scholar 

  169. Nasib, A.M.; Hatim, I.; Jullok, N.; Rasidi, S.: Preparation of supported-deep eutectic solvent membranes: effects of bath medium composition on the structure and performance of supported-deep eutectic solvent membrane for CO2/N2 gas separation. Malaysian J. Fundam. Appl. Sci. 16, 338–341 (2020)

    Google Scholar 

  170. Tang, Y.; Sun, J.; Li, S.; Ran, Z.; Xiang, Y.: Effect of ethanol in the coagulation bath on the structure and performance of PVDF-G-PEGMA/PVDF membrane. J. Appl. Polym. Sci. 136(17), 47380 (2019)

    Google Scholar 

  171. Sukitpaneenit, P.; Chung, T.S.: Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J. Memb. Sci. 340, 192–205 (2009)

    Google Scholar 

  172. Saljoughi, E.; Amirilargani, M.; Mohammadi, T.: Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes. Desalination 262, 72–78 (2010)

    Google Scholar 

  173. Saljoughi, E.; Sadrzadeh, M.; Mohammadi, T.: Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. J. Memb. Sci. 326, 627–634 (2009)

    Google Scholar 

  174. Zhao, S.; Wang, Z.; Wang, J.; Wang, S.: The effect of pH of coagulation bath on tailoring the morphology and separation performance of polysulfone/polyaniline ultrafiltration membrane. J. Memb. Sci. 469, 316–325 (2014)

    Google Scholar 

  175. Ferreira, R.S.B.; Do Pereira, C.H.; Dos Santos, F.E.A.; Leite, A.M.D.; Araújo, E.M.; De Lucena, L.H.: Coagulation bath in the production of membranes of nanocomposites polyamide 6/Clay. Mater. Res. 20, 117–125 (2017)

    Google Scholar 

  176. Ahmad, A.L.; Ramli, W.K.W.; Fernando, W.J.N.; Daud, W.R.W.: Effect of ethanol concentration in water coagulation bath on pore geometry of PVDF membrane for Membrane Gas Absorption application in CO2 removal. Sep. Purif. Technol. 88, 11–18 (2012)

    Google Scholar 

  177. Zhang, W.; Zhu, Y.; Liu, X.; Wang, D.; Li, J.; Jiang, L.; Jin, J.: Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew. Chemie Int. Ed. 53, 856–860 (2014)

    Google Scholar 

  178. Zhang, Y.; Tong, X.; Zhang, B.; Zhang, C.; Zhang, H.; Chen, Y.: Enhanced permeation and antifouling performance of polyvinyl chloride (PVC) blend Pluronic F127 ultrafiltration membrane by using salt coagulation bath (SCB). J. Memb. Sci. 548, 32–41 (2018)

    Google Scholar 

  179. Panda, S.R.; De, S.: Preparation, characterization and performance of ZnCl2 incorporated polysulfone (PSF)/polyethylene glycol (PEG) blend low pressure nanofiltration membranes. Desalination 347, 52–65 (2014)

    Google Scholar 

  180. Ying, L.; Zhai, G.; Winata, A.Y.; Kang, E.T.; Neoh, K.G.: PH effect of coagulation bath on the characteristics of poly(acrylic acid)-grafted and poly(4-vinylpyridine)-grafted poly(vinylidene fluoride) microfiltration membranes. J. Colloid Interface Sci. 265, 396–403 (2003)

    Google Scholar 

  181. Amirilargani, M.; Saljoughi, E.; Mohammadi, T.; Moghbeli, M.R.: Effects of coagulation bath temperature and polyvinylpyrrolidone content on flat sheet asymmetric polyethersulfone membranes. Polym. Eng. Sci. 50, 885–893 (2010)

    Google Scholar 

  182. Peng, J.; Su, Y.; Chen, W.; Shi, Q.; Jiang, Z.: Effects of coagulation bath temperature on the separation performance and antifouling property of poly(ether sulfone) ultrafiltration membranes. Ind. Eng. Chem. Res. 49, 4858–4864 (2010)

    Google Scholar 

  183. Chung, Y.T.; Mohammad, A.W.: Effects of membrane fabrication conditions towards the performance of nanoparticles-incorporated membranes. J. Teknol. 79, 41–45 (2017). https://doi.org/10.11113/jt.v79.11324

    Article  Google Scholar 

  184. Zhang, X.; Wang, Y.; You, Y.; Meng, H.; Zhang, J.; Xu, X.: Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes. Appl. Surf. Sci. 263, 660–665 (2012)

    Google Scholar 

  185. Said, N.; Hasbullah, H.; Abidin, M.N.Z.; Ismail, A.F.; Goh, P.S.; Othman, M.H.D.; Kadir, S.H.S.A.; Kamal, F.; Abdullah, M.S.; Ng, B.C.: Facile modification of polysulfone hollow-fiber membranes via the incorporation of well-dispersed iron oxide nanoparticles for protein purification. J. Appl. Polym. Sci. 136, 1–11 (2019)

    Google Scholar 

  186. Bagheripour, E.; Moghadassi, A.R.; Parvizian, F.; Hosseini, S.M.; Van der Bruggen, B.: Tailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layer. Chem. Eng. Res. Des. 144, 418–428 (2019)

    Google Scholar 

  187. Kamari, S.; Shahbazi, A.: Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: Long–term operation and reusability tests. Chemosphere 243, 125282 (2020)

    Google Scholar 

  188. Zhang, X.; Guo, Y.; Wang, T.; Wu, Z.; Wang, Z.: Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens. Water Res. 176, 115749 (2020)

    Google Scholar 

  189. Rahimpour, A.; Madaeni, S.S.; Taheri, A.H.; Mansourpanah, Y.: Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Memb. Sci. 313, 158–169 (2008)

    Google Scholar 

  190. Homayoonfal, M.; Mehrnia, M.R.; Shariaty-Niassar, M.; Akbari, A.; Ismail, A.F.; Matsuura, T.: A comparison between blending and surface deposition methods for the preparation of iron oxide/polysulfone nanocomposite membranes. Desalination 354, 125–142 (2014)

    Google Scholar 

  191. Jo, Y.J.; Choi, E.Y.; Kim, S.W.; Kim, C.K.: Fabrication and characterization of a novel polyethersulfone/aminated polyethersulfone ultrafiltration membrane assembled with zinc oxide nanoparticles. Polymer (Guildf). 87, 290–299 (2016)

    Google Scholar 

  192. Luo, M.; Wen, Q.; Liu, J.; Liu, H.; Jia, Z.: Fabrication of SPES/nano-TiO2 composite ultrafiltration membrane and its anti-fouling mechanism. Chin. J. Chem. Eng. 19, 45–51 (2011)

    Google Scholar 

  193. Tripathi, B.P.; Kumar, M.; Saxena, A.; Shahi, V.K.: Bifunctionalized organic-inorganic charged nanocomposite membrane for pervaporation dehydration of ethanol. J. Colloid Interface Sci. 346, 54–60 (2010)

    Google Scholar 

  194. Jamed, M.J.; Alhathal Alanezi, A.; Alsalhy, Q.F.: Effects of embedding functionalized multi-walled carbon nanotubes and alumina on the direct contact poly(vinylidene fluoride-co-hexafluoropropylene) membrane distillation performance. Chem. Eng. Commun. 206, 1035–1057 (2019)

    Google Scholar 

  195. Yong, T.J.; Munusamy, Y.; Ding, S.J.; Ismail, H.: Fabrication of a novel latex-based membrane for oily wastewater filtration: effect of degassing on the properties of membrane. Iran. Polym. J. 945(1), 012032 (2021)

    Google Scholar 

  196. Dong, C.; He, G.; Li, H.; Zhao, R.; Han, Y.; Deng, Y.: Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles. J. Memb. Sci. 387–388, 40–47 (2012)

    Google Scholar 

  197. Sun, J.; Li, S.; Ran, Z.; Xiang, Y.: Preparation of Fe3O4@TiO2 blended PVDF membrane by magnetic coagulation bath and its permeability and pollution resistance. J. Mater. Res. Technol. 9, 4951–4967 (2020)

    Google Scholar 

  198. Zhu, Z.; Jiang, J.; Wang, X.; Huo, X.; Xu, Y.; Li, Q.; Wang, L.: Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles. Chem. Eng. J. 314, 266–276 (2017)

    Google Scholar 

  199. Karimnezhad, H.; Navarchian, A.H.; Tavakoli Gheinani, T.; Zinadini, S.: Incorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling property. React. Funct. Polym. 135, 77–93 (2019)

    Google Scholar 

  200. Rahimpour, A.: UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties. Desalination 265, 93–101 (2011)

    Google Scholar 

Download references

Acknowledgements

The first author wants to express his gratitude to the Ministry of Higher Education and Scientific Research of Tunisia for the financial support through the scholarship “Bourse d’Alternance.” The financial support of the Faculty of Graduate Studies and Research at the University of Regina and the Natural Sciences and Engineering Research Council (NSERC) of Canada in the form of a Discovery grant, attributed to Dr. Henni, is greatly appreciated. The first author would like to thank Dr. Rifaat Abdalla, an Associate Professor at Sultan Qaboos University (Oman), for his generous support.

Funding

This work was made possible through financial support from the Faculty of Graduate Studies and Research at the University of Regina. Support from the Canada Foundation for Innovation (CFI), Western Diversification, and the Petroleum Technology Research Centre (PTRC) in the form of an equipment grant is greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

All mentioned names have contributed to the preparation or review of this paper. The first draft of the manuscript was written by Hassan ElGharbi and all co-authors commented on the different versions of the manuscript. All co-authors read and approved the final manuscript.

Corresponding author

Correspondence to Amr Henni.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElGharbi, H., Henni, A., Salama, A. et al. Toward an Understanding of the Role of Fabrication Conditions During Polymeric Membranes Modification: A Review of the Effect of Titanium, Aluminum, and Silica Nanoparticles on Performance. Arab J Sci Eng 48, 8253–8285 (2023). https://doi.org/10.1007/s13369-022-07143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07143-3

Keywords

Navigation